
Micro-Versioning Tool to Support Experimentation in
Exploratory Programming

Hiroaki Mikami
The University of Tokyo

Tokyo, Japan
mhiroaki@is.s.u-tokyo.ac.jp

Daisuke Sakamoto
The University of Tokyo

Tokyo, Japan
d.sakamoto@acm.org

Takeo Igarashi
The University of Tokyo

Tokyo, Japan
takeo@acm.org

ABSTRACT
Experimentation plays an essential role in exploratory pro-
gramming, and programmers apply version control opera-
tions when switching the part of the source code back to the
past state during experimentation. However, these operations,
which we refer to as micro-versioning, are not well supported
in current programming environments. We first examined pre-
vious studies to clarify the requirements for a micro-versioning
tool. We then developed a micro-versioning tool that displays
visual cues representing possible micro-versioning operations
in a textual code editor. Our tool includes a history model that
generates meaningful candidates by combining a regional undo
model and tree-structured undo model. The history model uses
code executions as a delimiter to segment text edit operations
into meaning groups. A user study involving programmers
indicated that our tool satisfies the above-mentioned require-
ments and that it is useful for exploratory programming.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g., HCI):
User Interfaces; D.2.6 Software Engineering: Programming
Environments

Author Keywords
Develpment environment; micro-versioning; version control
system

INTRODUCTION
Experimentation is an essential part of exploratory program-
ming; programmers write an experimental code fragment, test
it, and discard the fragment frequently during programming
[2, 13, 23]. During the iterations of this process, programmers
often have to switch the part of the source code back to the
past state. For example, they may sometimes restore a past
code because the new code does not work as expected. Pro-
grammers use and modify different versions of source code
when they revert the source code. These behaviors can be
regarded as a series of small-scale version control operations,
which we refer to as micro-versioning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI 2017, May 6-11, 2017, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4655-9/17/05 ...$15.00.
http://dx.doi.org/10.1145/3025453.3025597

Figure 1. Screenshot of our prototype tool. It works in text editor to
support micro-versioning. Our current implementation is designed for
development of web page using HTML, CSS, and JavaScript. Bottom
part shows preview of web page being developed.

A linear undo tool is widely used for micro-versioning. How-
ever, it causes various problems because it cannot undo edits
if they are not the latest. Programmers need to manually main-
tain consistency if multiple separate parts of the code need to
be undone together. For example, a programmer has to con-
duct linear undo operations twice to restore a deleted button
widget and an associated listener code if she wants to restore
the button widget. The button widget will not work if she
forgets to restore the associated listener code.

Version control systems (VCSs), e.g., Git [9], are tools to sup-
port advanced operations such as commit and revert. However,
they are designed to support version control operations during
large-scale, collaborative software development and are not
suitable for micro-versioning. These tools prevent users from
conducting rapid micro-versioning operations because of the
heavyweight of their user interfaces, that is, programmers have
to open separate dialogs, find a specific edit, and select it to
apply a versioning operation.

Yoon et al. reported that nearly 30% of micro-versioning oper-
ations are conducted by rewriting a source code directly [24].
However, a direct rewrite sometimes causes inappropriate text
edits [23]. This suggests that programming environments re-
quire micro-versioning features that are better suited than the
current tools. Therefore, we propose a micro-versioning tool
that provides appropriate support in terms of the user interface
and edit history.

We refer to version control operations during exploratory pro-
gramming as micro-versioning. The granularity of the micro-
versioning operations is between backtracking [23, 24] and
version control operations conducted using VCSs. Backtrack-
ing focuses on only one region of a source code. On the other
hand, versioning conducted using VCSs affects multiple re-
gions and is often a large-scale, collaborative task involving
multiple programmers. Micro-versioning also handles mul-
tiple regions of a source code; however, it is a small-scale,
personal task. In this study, we used code executions as a
delimiter to separate edit history into a meaningful set of edit
operations [10]. This is based on an assumption that the user
would execute a code after implementing a meaningful set of
edits but would not execute it in the middle of a sequence of
related edits.

We examined previous studies [21, 23, 24] to identify the fol-
lowing requirements for a micro-versioning tool. 1) It should
have a lightweight user interface; 2) provide the user with
visual information of operation; and 3) have an appropriate his-
tory model that proposes a limited amount of applicable micro-
versioning features. We then developed a micro-versioning
tool based on this analysis (Figure 1). The tool displays a can-
didate list, which is inspired by the auto-completion feature
of integrated development environments (IDEs), to conduct
micro-versioning. The tool visually represents locations where
version control operations can be conducted. It also visualizes
the operation in a code editor. We present our novel history
model based on an current selective undo model [25]. Our
model can extract meaningful micro-versioning operations
from an edit history, eliminating inappropriate candidates.
Finally, we report the results of a user study we conducted
involving five participants to evaluate the usability of our tool
and history model. We found that our tool satisfies the above
requirements.

The main contributions of this study are as follows.

• We clarified the requirements for micro-versioning features
based on previous research and developed a tool that con-
tains the following two components.

• We developed a user interface to allow users to conduct
micro-versioning operations in the main code editor without
using separate dialogs.

• We constructed a history model that can extract meaningful
micro-versioning operations from an edit history.

• We conducted a user study that demonstrated the usability
of our tool and the effectiveness of our history model.

RELATED WORK

Linear Undo and Commenting Out
Programmers mostly conduct micro-versioning in two ways.
The first involves using a linear undo tool [24], which can
undo the latest edit (this is known as the shortcut-key Ctrl+Z
in Windows and Command-Z in Mac OS). The second is based
on commenting out [23], which is a feature of a programming
language. These tools’ capabilities are limited, but they and
the features are widely used. For example, a linear undo
tool cannot undo edits if they are not the latest. In addition,
commenting out is problematic when multiple separate parts

of the code need to be commented out or uncommented out
together because programmers need to manually maintain
consistency.

Extended Undo Tools
There are various extensions of linear undo tools because such
tools are widely used and present many problems. Some text
editors, such as Emacs [7], provide regional undo features that
allow users to undo the latest edit in the selected region. These
features solve the limitations of linear undo tools to some
extent, but several problems remain. First, these tools do not
provide visual representations, so they are often composed of
a hidden feature. Second, they cannot apply edits to separate
multiple parts of the source code at the same time. Finally,
they cannot be used for all typical micro-versioning situations.
For example, they cannot restore some previous text if there
are undone text edits. Gundo [12] and Undo Tree [20] allow
users to restore any previous texts by using tree-structured
histories. However, these tools use complex user interfaces
and cannot conduct regional undo operations, which are the
most popular micro-versioning operations [25].

Several researchers have proposed selective undo tools that
can undo any edits [18, 25], but they also use complex user
interfaces. For example, when programmers selectively undo
a specific edit in the simplest way, they are required to 1)
open the history view, 2) find the edit they want to undo in
the history view, and 3) undo the edit. Previous research has
shown that many programmers tend to prefer lightweight user
interfaces such as keyboard shortcuts (e.g., Quick Assist in
Eclipse) rather than complex user interfaces such as dialogs
and menus [21].

These tools [18, 25] sometimes generate inappropriate candi-
dates as a result. The algorithm proposed by Yoon et al. [25]
is used to attempt to generate appropriate candidates by con-
sidering regional conflicts. However, it still fails to eliminate
inappropriate candidates in some cases. For example, suppose
that a programmer sets a variable to 1.0, changes the variable
to 2.0, undoes the previous edit, and finally changes the vari-
able from 1.0 to 3.0. If the user redoes the second operation,
the algorithm generates 2.03.0, which is inappropriate as a
code. Our history model addresses these problems.

Version Control Systems
Version control systems are used often in programming. Many
IDEs provide extensions that allow users to use VCSs [6]
inside; however, they use complex user interfaces. Lee et al.
proposed an IDE extension that embeds the information from
VCSs into the code completion features [15]. This extension
allows users to complete the current method name using the
method name of a previous version that exists in the program.
However, this extension is not suitable for micro-versioning
because such tools require that users commit manually, which
is a heavy-weight process for micro-versioning.

Many IDEs have local history-keeping features that save the
source code when a programmer saves a file, which allows
the user to restore it later [5]. However, these features involve
complex user interfaces such as dialogs and menus, and most
only support linear undos, so they are also not suitable for

micro-versioning. Steinert et al. proposed an IDE extension
that suggests version information to users based on the differ-
ence between versions of abstract syntax trees (ASTs) and the
success rate of unit tests [19]. The usability for programmers
was not tested, but this extension helps users to understand the
versions of a program.

History Management Models
Several studies have proposed history models that allow users
to manage and manipulate a history more efficiently. Nancel et
al. proposed a conceptual model of interacting with a history,
which uses information related to the target content of a history
(e.g., texts and images), application, and commands made by
the user [17]. However, this model cannot conduct regional
undo operations and apply text edits to multiple separate parts
of a source code at the same time, although both this model
and that of our proposed tool are for simulating a tree structure
within a linear history model. Cass et al. proposed a selective
undo algorithm and model, which use a process-programming
language to define the dependencies for a task [4]. Their model
and our model are for eliminating inappropriate candidates
from the result of selectively undoing, but their model cannot
apply text edits to multiple separate parts of a source code
at the same time. In addition, it is unrealistic to always ex-
pect the definition of a task model for programming because
programming is a complex task, and there are many types of
tasks in programming. Hayashi et al. proposed a tool that
enables the refactoring of the edit history [14]. Both this tool
and our model are for obtaining the edit history that is useful
for version control operations; however, the tool requires a
user to refactor the edit history manually.

Git [9] allows the user to revert a commit selectively by using
the git revert command. The history model used by Git
does not directly support regional undo operations, although it
has the characteristics of both tree-structured history models
and selective undo history models. This model is not suitable
for micro-versioning because regional undo operations are
popular in micro-versioning [25]. Git also allows the user to
selectively revert the region of the source code to the previous
commit by using the git checkout -p command. It enables
a user to conduct all micro-versioning operations; however, a
user has to manually maintain consistency. The history model
of Git does not contain the information when the user conducts
the git checkout -p command.

LITERATURE SURVEY TO ELICIT MICRO-VERSIONING
TOOL REQUIREMENTS
We investigated previous studies to better understand the prob-
lems that programmers encounter during micro-versioning and
to elucidate the requirements for efficient micro-versioning
tools. First, we investigated previous studies on backtracking,
which is a user’s action during micro-versioning, to better
understand some of the problems of micro-versioning. These
studies show that programmers often use linear undo tools
or commenting out for micro-versioning and that these tools
and features have various problems [23, 24]. Programmers
sometimes cannot use linear undo tools because nearly 10%
of all backtracking operations are selective [24]. In addition,
programmers often make mistakes when they comment or

uncomment out multiple separate parts of a source code at
the same time [23]. This indicates that a micro-versioning
tool requires a history model that can propose typical micro-
versioning operations.

We also investigated previous studies on automated refactoring
tools. Several studies indicate that an automated refactoring
tool should have a simple, minimal, and lightweight user in-
terface, which allows users to conduct refactoring rapidly
because programmers tend to prefer these user interfaces [16,
21]. In addition, several studies indicate that refactoring tools
should provide information 1) to support decision making and
2) prevent the tool from being a hidden feature [16, 21].

These previous studies took into account automated refac-
toring tools, but we believe the same issues affect micro-
versioning tools; micro-versioning tools should have the
same requirements as automated refactoring tools. A micro-
versioning tool should have a lightweight user interface and
provide visual information.

Based on our literature survey, we established the following
requirements for a micro-versioning tool.

• A tool should have a lightweight user interface that allows
the user to conduct micro-versioning operations rapidly.
Thus, it should not use separate dialogs or user interfaces
that are similar to these dialogs.

• It should provide users with visual information to make
them aware of a tool and support decision making. It should
always display visual representations and information about
micro-versioning operations that are applicable.

• Finally, it should use a history model that proposes applica-
ble micro-versioning operations.

OUR MICRO-VERSIONING TOOL
We designed our micro-versioning tool based on the require-
ments described above. The tool’s user interface is lightweight
and provides the user with visual information about micro-
versioning operations. As described in the next section, the
history model used with the tool can conduct typical micro-
versioning operations and eliminate inappropriate candidates.

Our tool works inside a text editor and can be used for
any textual programming language. The user can use both
our tool and traditional methods (e.g., linear undo tools and
commenting-out) because our tool is integrated in a typical
text editor.

Example Scenario
Suppose a programmer creates a web-form. The web-form
gathers information about a user’s operating system (OS). She
first uses the text field to input the name of the OS (Step 1
in Figure 2). She then replaces the user interface of the web-
form from the text filed to the dropdown list because there
are only a few OSes (Step 2 in Figure 2). Note that this edit
affects multiple locations in the code. She then modifies the
background color of the web-form (Step 3 in Figure 2). She
presses the preview button after each change to see the result.
Our proposed tool records all these edit operations.

function onClick() {

 var os =

 ui.selectedOptions[0].innerHTML;

 background-color: #e0e0e0;

<select id="os">

 <option>Windows</option>

 <option>OS X</option>

 <option>Linux</option>

</select>

...

...

Step 2

function onClick() {

 var os =

 ui.selectedOptions[0].innerHTML;

 background-color: white;

<select id="os">

 <option>Windows</option>

 <option>OS X</option>

 <option>Linux</option>

</select>

...

...

Step 3

function onClick() {

 var os = ui.value;

 background-color: #e0e0e0;

<input type="text" id="os"/>

...

...

Step 1

function onClick() {

 var os = ui.value;

 background-color: white;

<input type="text" id="os"/>

...

...

Step 4

implement text field implement dropdown list change background color revert to text field

Figure 2. Example scenario of micro-versioning.

She notices that the dropdown list is unsuitable for the web-
form because some users have several PCs. She wants to revert
the change in the user interface. She sees a marker (Figure 5 A)
and indicator (Figure 5 B), which are displayed with our tool,
and notices that she can conduct micro-versioning operations
related to the select tag by using our tool. The indicator and
marker are generated by the recorded edit history.

She clicks the marker to conduct a micro-versioning opera-
tion. Our tool displays a candidate list (Figure 5 C) and edit
details (Figure 5 D and E). She understands that the operation
shown in the candidate list will revert the change in the user
interface and the JavaScript program, which are required in
order to use the text field. She clicks the operation shown in
the candidate list because the operation matches her purpose.
Finally, our tool conducts the micro-versioning operation, and
the web-form uses the text field (Step 4 in Figure 2). Note
that multiple lines including separated ones are appropriately
reverted together.

Lightweight User Interface
We designed the proposed tool so users can conduct all the
basic operations related to micro-versioning inside the text
editor without separate dialogs. The tool displays all the user
interface elements in a text editor and displays indicators as
visual representations. Four types of indicators (Figure 3) are
used. The type (i) indicator, which is a vertical line located to
the right of a text, is used when the tool must delete or replace
lines of the text. The type (ii) indicator, which is a triangle
located to the left of a text, is used when it is necessary to
insert lines. The type (iii) indicator, which is a text underline,
is used when it is necessary to delete or replace words. Finally,
the type (iv) indicator, which is a triangle located at the bottom
of the line, is used to insert words.

The tool displays markers to allow easy access by a user be-
cause the indicators are small and difficult to click. The lo-
cation of a marker depends on the corresponding text. If the
corresponding text is composed of less than one line, a marker
is located near the gutter of the text editor, which displays
line numbers (Figure 4 A); otherwise, the marker is located
to the right of the text (Figure 5 A). The candidate list is dis-
played when a user clicks on a marker or indicator or uses

Replacing lines

Replacing words

Inserting lines

Inserting words

(i) (ii)

(iii) (iv)

Figure 3. Four types of indicators.

the keyboard shortcut (Ctrl+Space by default). There are
two types of candidate lists. The drop-down list (Figure 4
B), which is located below the text, is used when the related
indicator type is (iii) or (iv); otherwise, the second (Figure 5
C) is used, which is located to the right of the text. Edit details
are displayed either within the text editor or on the scrollbar
(Figure 5 D and E). In addition, the user can use a mouse and
keyboard to interact with our tool, such as opening a candidate
list and conducting a micro-versioning operation.

A B

Figure 4. A) Example of marker and indicator. B) Example of candidate
list, which is located below text.

Visual Information
Our tool always displays indicators to enhance the user’s
awareness of micro-versioning operations. A marker is dis-
played if the caret of the text editor is positioned on the cor-
responding text, which provides the user with information
about the micro-versioning operations that are applicable to
the focused text.

In addition, edit details and candidate lists provide informa-
tion about a micro-versioning operation, such as text inserted
and deleted by the micro-versioning operation. Edit details
in the scrollbar show information regardless of whether the
micro-versioning operations are displayed onscreen. If an

C
D

E

A

B

Click A

Figure 5. Lightweight user interface for micro-versioning. (A) Marker, (B) indicator. (C) candidate list, and (D and E) editing details

operation affects a large part of the source code, some edits
are not visible on the screen. Thus, users are unable to follow
what occurs when some edits are not displayed onscreen. We
addressed this issue by displaying edit details that show the
line numbers and the difference between texts on the scrollbar.
The user can understand the outcomes of a micro-versioning
operation by observing the edit details, so it is expected that
they can conduct more accurate micro-versioning operations
by using our tool compared with using linear undo tools or
commenting-out. The text deleted by the operation appears as
struck-out red text, whereas any text inserted by the operations
is represented as blue text in edit details (Figure 5 D and E)
and candidate lists (Figure 5 C).

Search Feature
The tool implements a feature that allows the user to search
through all the recorded versions using text (Figure 6). The
tool shows only recent operations inside the main text editor
view to prevent confusion (described in the next section), how-
ever, this search feature will search for all the versions stored
in the tool. The user opens the search bar, types text in it, and
clicks the find button in the search bar. The tool then opens a
candidate list and focuses on the operation that includes the
typed text. If the user clicks the find button once more, the tool
shows another operation that includes the text. This search
feature is particularly useful when the user does not remember
the location of the target micro version, but remembers the
text included in the version.

Figure 6. Search feature

HISTORY MODEL
Our history model extends the selective undo model [25] so
that it can generate meaningful micro-versioning operations
from an edit history. Specifically, our model supports the
following four novel features: 1) regional redo, 2) exclusive
edits, 3) grouping of separate edits, and 4) redo propagation.
Before explaining these extensions, we first describe the basic
building blocks of our model.

The original selective undo model aggregates collocated text
edit operations (deletion, insertion, and replacement) into one
and uses it as a basic unit. We call this an atomic edit. Our
model also uses atomic edits but introduces a novel structure
called edit fragment on top of them and uses it as a basic
unit. An edit fragment wraps an atomic edit (called represen-
tative edit) and stores the following four additional pieces of
information associated with the representative edit.

First, each edit fragment contains a flag indicating whether it
is currently enabled or disabled. Second, each edit fragment
stores timestamps when it was toggled (enabled or disabled)
in the past. This is used to calculate its score when the system
enumerates the candidates. Third, each edit fragment stores
all the atomic edits caused by its last toggle. This information
(called affected edits, AE) is necessary to undo these atomic
edits when the edit fragment is toggled again. Finally, each edit
fragment stores all the edit fragments that were disabled when
it was disabled last time. This information (called affected
fragments, AF) is used to support redo propagation.

Our model also stores dependency relation among edit frag-
ments (this corresponds to conflicts among atomic edits in
[25]). We define an edit fragment f2 depending on f1 when
f2 is later than f1 and f2’s representative edit overlaps that
of f1 (Figure 7). Our model propagates disablement and en-
ablement following the dependency relationship as in [25].
When f2 is enabled, f1 is automatically enabled. When f1 is
disabled, then f2 is automatically disabled.

Code

f();

insert f();
execute

insert 10
execute

f(10);

undo f();

User Actions

f(10);

f(10);

Orig. Model

f();
e1

f(10);
e2

f1:e1
AE {e1}

{}AF

f2:e2
AE {e2}

{}AF

=

=

=

=

f();
e1

f(10);
e2

e3
f(10);

e4
f(10);

e5
f(10);

Orig. Model f1:e1
AE {e4, e5}

{f2}AF

f2:e2
AE {e3}

{}AF

=

=

=

=

redo 10

redo f();

A B

C

D

Our History Model

Figure 7. Regional undo and redo propagation. Our model wraps origi-
nal model. e1 to e5 are atomic edits. f1 and f2 are edit fragments. Gray
fragments are disabled. Black arrows represent dependency between
edit fragments.

1) Regional Redo
The original model supports regional undo but does not fully
support regional redo. Consider the situation shown in Fig-
ure 7. If the user undoes e1 after Figure 7 A, the original
model appropriately undoes e2 as well (regional undo). How-
ever, if the user redoes e2 after Figure 7 B (which corresponds
to undoing e3 in their model), the result becomes 10, which is
inappropriate. Ideally, the result should be f(10).

Our model addresses this problem using the dependency re-
lation among edit fragments. When the user redoes e2 after
Figure 7 B, it is recognized as enabling f2 in our model. Since
the model determines that f2 depends on f1, it also enables
f1. Enabling f2 undoes e3 and enabling f1 undoes e4 and
e5, resulting in f(10) as expected (Figure 7 C).

2) Exclusive Edits
The original model fails to properly handle exclusive edits.
Consider the situation shown in Figure 8. Since e2 and e3
replaced the same text, they should not coexist. However,
if the user redoes e2, the original model is not aware of the
relation and produces x=2.03.0, which is inappropriate.

f1:e1
x = 1.0;

f2:e2
x = 2.0;

f3:e3
x = 3.0;

exclusive

replace 1.0 to 2.0
execute

replace 1.0 to 3.0
execute

x = 1.0;

insert x = 1.0;
execute

x = 2.0;
undo 2.0

x = 1.0;

x = 3.0;
redo 2.0

x = 2.0;

Code User Actions

A

B
f1:e1

x = 1.0;

f2:e2
x = 2.0;

f3:e3
x = 3.0;

exclusive

Our History Model

Figure 8. Example of model structure that contains exclusive relation.

Our model addresses this problem by simulating a tree-
structured undo model by introducing an exclusive relation
among edit fragments. We define that two edit fragments are
exclusively related if they delete the same part of a text. When
the user enables an edit fragment f, it automatically disables
edit fragments that are exclusively related to f. For example,

f2 and f3 in Figure 8 are exclusively related because both
delete 1.0. If the user enables f2 after Figure 8 A, it disables
f3, producing x=2.0 as expected (Figure 8 B).

3) Grouping Separated Edits
The original model fails to handle separated, but related edits
properly. Suppose that the user inserts x=10; and print(x);
in distant locations in a code. If the user undoes x=10; then
the system should also undo print(x); because print(x);
becomes inappropriate without x=10;. However, the original
model cannot support this.

Our model supports grouping of such separate edit fragments
by using code executions as delimiter. The edit fragments
created between the same two code executions are put into the
same group [10]. If the model toggles an edit fragment f, it
also toggles all the edit fragments in the same group. Consider
the situation shown in Figure 9. If the user disables f1, the
model disables f2 because they are in the same group.

A

insert x=10;
insert print(x);
execute

undo x=10;

x = 10;
...
...
print(x);
...

Code User Actions

...

...

...

f1 x = 10;

f2 print(x);

Group

f1 x = 10;

f2 print(x);

GroupB

...

...

...

Our History Model

Figure 9. Example of model structure that contains separated but re-
lated edit fragments. Edit fragments f1 and f2 are put in same group.

4) Redo Propagation
If the user undoes an operation and redoes it later, the original
code before undo should be restored. However, the original
model fails to support this. Consider the situation shown in
Figure 7. The original state is f(10) at Figure 7 A. When the
user undoes e1, the original model also undoes e2 because
e2 is dependent on e1 (Figure 7 B). However, when the user
redoes e1 later, it does not redo e2, resulting in f(), which is
different from the original state f(10).

Our model uses the affected fragments stored in each edit
fragment to address this problem. When the user enables an
edit fragment, it also enables its affected fragments. Suppose
that the user enables f1 after Figure 7 B. The system auto-
matically enables f2 because f2 is recorded as an affected
fragment of f1. This successfully restores the original state
f(10) (Figure 7 D).

Enumeration of Candidates
Our history model needs to enumerate candidate micro-
versioning operations to show them in the code editor. First,
the model calculates a score for each edit fragment by using
an evaluation function found in an existing bug prediction
algorithm [11] to generate candidates. The algorithm scores
each edit fragment based on how many times the edit fragment
was toggled, as well as their recentness. Second, it extracts
the edit fragments with the highest N scores. We use N = 5 in

our current implementation. It then toggles each edit fragment.
Our model toggles other edit fragments related to the edit
fragment as described above. The resulting code becomes a
candidate of micro-versioning operations. Identical candidates
are unified, so the number of candidates is less than N.

For example, the model extracts f1 and f2 in Figure 7 A in the
case in which N = 2. The system generates an empty text as
a result of disabling f1 (disabling f2 as well as a side effect),
and generates f() as a result of disabling f2 (no side effect).

IMPLEMENTATION
We implemented our micro-versioning tool as an extension
of the Ace text editor1, which works inside a web browser.
The user interface of the micro-versioning tool was written in
JavaScript, and the history model was implemented in Scala.
The implemented tool is a text editor for coding HTML, CSS,
and JavaScript. In addition to this micro-versioning tool, we
implemented typical features of text editors, such as opening
and saving a file. Our tool can also display the preview of the
HTML opened in the text editor. Our current implementation
is a proof-of-concept prototype and is missing important fea-
tures to be used as a full-fledged coding environment. First,
our current implementation only supports the edit of a single
document (source code), and does not support the develop-
ment of a system consisting of multiple documents. Second,
our current implementation is built on a plain text editor and
does not provide advanced supports seen in standard IDEs
such as code completion and error highlighting.

The output of the history model is a set of candidate source
codes, each of which corresponds to a candidate micro-
versioning operation enumerated with the model. The system
generates visual elements for each candidate source code as
follows. The system first calculates the word-level differences
between the current source code and the candidate source
code using dwdiff -P command2. The tool also calculates
the line-level difference by using the histogram diff algorithm3,
which is the algorithm used in EGit [6]. A collocated set of
word-level and line-level differences is called a delta.

Indicators and candidate lists are created from either word-
level or line-level deltas. If a word-level delta spans multiple
lines, the system uses a corresponding line-level delta. Other-
wise, it uses a word-level delta. Indicator and candidate lists
are merged if they overlap. For example, indicator B and can-
didate list C in Figure 5 are created from the line-level delta be-
cause the word-level delta (replacing ">...</select> with
"/>) spans multiple lines. The candidate list in Figure 6 is
created from the word-level delta.

Edit details are generated from the word-level difference.
When the user focuses on a candidate, all the related edit
details are shown, whereas other edit details are hidden. Our
tool saves the edit history using the JSON format.

1https://ace.c9.io/
2http://linux.die.net/man/1/dwdiff
3http://download.eclipse.org/jgit/docs/jgit-2.0.0.201206130900-
r/apidocs/org/eclipse/jgit/diff/HistogramDiff.html

USER STUDY
We conducted a small-scale user study to evaluate our tool
and history model. The user study was composed of two parts.
In the first part, participants tested our tool and evaluated its
usability by completing questionnaires. The second part iden-
tified what users expect of micro-versioning candidates by
showing several examples of typical micro-versioning situa-
tions to the participants.

We recruited five participants who were graduate or undergrad-
uate students in our computer science department, all males
aged 22 to 23 years. They each had over two years experience
in programming and experienced with JavaScript and HTML.

Part I: Evaluation of Overall Tool
The aim of the first part of the study was to evaluate our
tool. We examined whether our user interface satisfied the
requirements determined in this study. First, the participants
were asked to complete a training task in about 10 minutes
using our proposed tool. Next, they were asked to complete
a feature-adding task within about 1 hour. We observed and
noted the behavior of the participants and their comments
during the experiments. After finishing the tasks, we asked
the participants to complete a questionnaire about our tool
and micro-versioning tasks. The system usability scale (SUS)
[3] was used in the questionnaire.

We prepared a training task to allow the participants to become
familiar with our proposed tool so they could conduct micro-
versioning operations. In the training task, a participant wrote
a code to add an HTML button and its event listener first,
before changing the behavior when clicking the button, then
removed the button. The last change could be conducted by
applying undo using our tool.

We prepared a paint program written in HTML, CSS, and
JavaScript as the base code for the study, which contained 174
lines of code. Participants were asked to add a thickness con-
trol feature by using a text field and to re-implement the same
by using a slider. Next, they were asked to add a preview of the
thickness. Finally, they were asked to delete the preview fea-
ture. The paint program written in Java has been used in other
studies [8, 23], and a thickness control feature was used to
collect the backtracking behavior of programmers [23]. These
studies showed that the Java program is sufficiently simple to
understand and that is can be modified within a short amount
of time, while implementing the thickness control feature re-
quires some micro-versioning operations. Thus, we decided
to use these programming tasks in our study. A previous study
[23] also indicated that the behavior of most programmers
was not affected by knowing that they might conduct a micro-
versioning operation later. Thus, the participants were asked
to do only one programming task in this study.

All the participants used a laptop computer (Core i5-5200U
and 8GB RAM) on which our tool operated in Firefox 44.0.2.
They used two full HD (1920 × 1080 pixels) displays and
a mouse. The participants were told that they could use any
resources available to write the program and for debugging.
They mainly used Google to find JavaScript functions and

Question P1 P2 P3 P4 P5
1 I thought it was easy to use 6 5 6 6 5
2 I thought it was suitable for pro-

gramming
6 6 4 6 5

3 I felt very confident using the
tool

3 3 1 6 3

4 I would imagine that most peo-
ple would learn to use the tool
very quickly.

6 3 2 6 3

5 I needed technical support to
use it

4 2 7 2 5

6 I had to concentrate to use it 4 2 7 2 6
7 I would like to use the tool fre-

quently
7 5 4 6 5

Table 1. Results of post questionnaire on seven-point Likert scale

P1 P2 P3 P4 P5
Update preview 17 21 14 34 13
Open candidate lists 2 8 4 3 2
Conduct operations using our tool 1 3 3 1 2
Search operations 1 1 0 0 1
Revert operations manually 1 0 0 2 0

Table 2. Number of operations conducted during main task

HTML elements, and the Web console in Firefox for debug-
ging.

Results
All the participants successfully completed the training and
main tasks. The main task required 46.2 minutes on average
(SD = 19.6 minutes). The results of the post-questionnaire
analysis are listed in Table 1. A score was positive when it
was higher than 4 for Q1–4 and Q7, but vice versa for Q5 and
Q6. Table 2 lists the participants’ actions related to micro-
versioning during the main task.

All the participants agreed that our tool was easy to use (Q1).
Three participants also responded that they would be able
to write source code faster using our tool. Four participants
responded negatively to Q3 because they were not familiar
with our tool. One participant (P2) said that: “I sometimes
cannot predict the results of my operation. However, I think
I will feel confident because the results were intuitive in the
user study.” There were no negative responses to Q2 and
Q7, but one participant (P3) was neutral. This participant
also responded negatively to Q4–6. His neutral or negative
responses were found to be related to his programming method,
in which he wanted to manually write or rewrite each source
code to check changes. Thus, he felt anxiety when he used our
tool because several parts of the source code were changed
simultaneously.

Visual information displayed by tool: All the participants
said that the information displayed by the tool was useful.
One participant (P1) said that: “By using this tool, I could
understand the location where I made changes at a glance.”
Another (P4) said that “I could understand the details of the
proposed candidate by observing the information displayed by
the tool.” During programming, all the participants observed a
candidate list and edit details to find a desired micro-versioning

operation before they decided their next actions. If they found
a desired micro-versioning operation, it was applied. If not,
they closed the candidate list and opened another list.

However, two participants complained that the informa-
tion was not sufficient in several cases. One partici-
pant (P1) noted that it was sometimes difficult to under-
stand the outcomes when the micro-versioning operation
was complex. The right figure shows the edit details
and candidate list that P1 said were complex. Another
(P4) said that the indicators should display more informa-
tion, such as the importance of micro-versioning operations.

Complex visual information

In addition, two participants (P1
and P4) ignored indicators when
they reverted an extremely small
operation and manually reverted
the source code. For example, P1
changed the parameter from 1 to
10 then rewrote it from 10 to 1 without using our tool.

Candidates proposed by tool: All the participants agreed
that almost all the candidates proposed by the tool were ap-
propriate. However, two participants (P2 and P3) said that the
tool should not propose an operation for deleting the entire
source code. They said that deleting all the source code was
inappropriate, and it disrupted them when they tried to find a
desired operation.

Other possible applications using tool: Three participants
suggested that the proposed tool would also be useful for
other applications. Two participants (P2 and P4) said that it
might be useful for various types of creative activities, such as
writing a novel, writing lyrics, composing music, and drawing
pictures. One participant (P2) said “My friend sometimes
writes novels, and often conducts experiments. My friend
would like to save and use the history of his experiments.”
Another (P4) said that the proposed tool might be useful for
programming education. He considered that novices often
encounter problems while programming and that the proposed
tool might be useful because it improves user experience when
problems occur. One participant (P1) said that he would use
the proposed tool when using document editing software such
as Microsoft Word. Another (P2) considered that the tool
might be useful when editing his schedule.

Performance: Our tool took several tens of milliseconds to
add a new edit fragment during the experiment, and it is em-
pirically linear time. It took 8.3 msec when the number of edit
fragments was 10 on average and 54 msec when the size was
44.

Part II: Evaluation of History Model
The aim of the second part of the study was to evaluate our
history model and compare it with other history models, such
as linear undo and selective undo. Thus, we aimed to un-
derstand 1) whether the model can propose candidates that
meet the expectations of users, and 2) whether it can elimi-
nate inappropriate candidates. In this study, we investigated
previous research [24, 25] to prepare the example situations
for micro-versioning and found seven backtracking situations
that are similar to the typical situations encountered during

micro-versioning (Table 3) [23]. Second, a linear undo tool,
which is the most common tool for micro-versioning, does
not work well when multiple situations (e.g., refactoring and
fixing small mistakes) occur simultaneously or when some
text edits are undone [25].

The selective undo model may generate too many candidates
when an example contains many text edits. Thus, we reduced
the number of text edits by separating the example into four
micro-versioning situations in which these four examples rep-
resent micro-versioning situations. Each example contained
either multiple typical micro-versioning situations or text edits
undone by a programmer (A, B, and C contained multiple situ-
ations and D contained an undone text edit). The programming
tasks used in these examples were extracted from previous
programming studies [22, 24, 25, 1, 23].

First, we showed the participants each example of an edit
history and the candidate of micro-versioning operations gen-
erated using the selective undo model [25]. We used the
selective undo model because the candidates it generated were
composed of a superset of those generated using the extended
undo models and our model. Figure 10 shows an edit history
and the candidates for D in Table 3. We then asked the par-
ticipants to select the candidates that could be considered as
results after reverting a source code change. We also required
explanations when a participant’s selection differed from the
result obtained with our model.

Edit History Candidates
var ratio = 0.3

var ratio = 0.4

var ratio = 0.3

var ratio = 0.5

E1

E2

E3

var ratio = 0.50.4 C1 (Undo E1)

var ratio = 0.30.3 C2 (Undo E2)

var ratio = 0.3 C3 (Undo E3)

var ratio = 0.50.3 C4 (Undo E1 and E3)

var ratio = 0.4 C5 (Undo E2 and E3)

Figure 10. Edit history and candidates for D in Table 3. Gray candidates
are those generated with our tool.

Results
Our history model generated a total of eight candidates from
all edit histories. The participants correctly selected 7.4 of
these on average (SD = 0.89). However, they selected 2.2 of
the 14 candidates that could not be generated with our model
on average (SD = 1.30). Table 4 lists the candidates that
participants selected and those that our model generated for D.
One participant (P3) selected C5, which could be generated
with our model; however, he did not select C3, which could
also be generated with our model.

We confirmed that all the candidates selected by the partici-
pants can be generated by combining several regional undo
operations or one tree-structured undo operation. We also con-
firmed that none of the participants selected all the candidates
generated with the selective undo model, indicating that the se-
lective undo model generated several inappropriate candidates.
These results indicate that our underlying assumptions regard-
ing our model are reasonable. However, the sets of candidates

selected by the participants were all different, except for B.
This indicates that a history model cannot generate candidates
that exactly match the expectations of all users.

We investigated the explanations given by the participants for
the cases in which their answers differed from the output of
our history model and identified the following two problems
with our model. First, the expectations of the participants
sometimes depended on the semantics of the program under
development. For example, most participants (three out of five)
answered that reverting several steps should be considered as a
reverting operation in A, but all the participants answered that
reverting several steps should not be considered as a reverting
operation in B. All the participants said that B-2 and B-3
appeared to be totally different text edits and answered that
they should not be reverted simultaneously. Likewise, all the
participants answered that restoring an API name (C-2) should
be considered as a reverting operation, but two participants
(P1 and P5) said that restoring a typo (A-3) should not be
considered as a reverting operation. They said that: “I do not
think that fixing a typo should be part of the edit history. Thus,
I did not select restoring typo as a reverting operation.”

The second problem is concerned with reverting the last text
edit, which is similar to a linear undo operation, and it dif-
fered according to the participant. Three participants (P1, P3,
and P4) responded that reverting the last text edit should be
considered as a reverting operation regardless of whether the
reverted program could be compiled. However, two partici-
pants responded that a reverted program should be capable of
being compiled.

DISCUSSION
The results of the first part of the user study indicate that our
tool was useful and easy to operate. The participants agreed
that our tool satisfied the requirements described above. In
addition, we found that the user interface of the proposed tool
might be useful for several tasks in addition to programming,
such as creative activities and programming education. The
results of the second part indicate that our history model could
combine two extended undo models, show that appropriate
individual reverting operations are different and that no his-
tory model can support all micro-versioning operations in all
situations.

The possible extensions proposed by the participants were
related to various targets such as writing novels, drawing pic-
tures, and writing music, although our tool was designed for
text-based programming. This shows that trial and error is a
common task because a user encounters many problems during
these iterative processes. Our findings also indicate that the
defined requirements are important in various domains in ad-
dition to programming. However, providing micro-versioning
tools in various domains would present many challenges, but
identifying the specific requirements and using the proposed
tool could help address these challenges.

User Interface of Micro-Versioning Tool
Our tool successfully displayed useful information. However,
our results suggest that a more sophisticated visualization
method is required, which should 1) be capable of generating

Case Situation Edit Summary #Candidates References
A • refactoring (1) Write program with magic number 7 (2) [1, 22]

• fix typo or small mistakes (2) Introduce new variable to remove magic number.
(3) Fix typo in name of variable.

B • try to find appropriate algorithm (1) Implement factorial method using recursion 3 (2) [1]
• fix code that was just added (2) Fix method

because it is not working (3) Implement factorial method using tail recursion
C • understand use of new API (1) Modify HTML using innerText variable 7 (2) [23, 25]

• test various user interface designs (2) Change innerText to innerHTML.
(3) Modify user interface from slider to text field

D • tune parameters (1) Change parameter from 0.3 to 0.4 5 (2) [24]
(2) Undo it
(3) Change it to 0.5

Table 3. Examples of typical micro-versioning situations. Numbers in parentheses are those of candidates that can be generated with our history model.

Case D C1 C2 C3 C4 C5
P1 X X
P2 X X
P3 X
P4 X X
P5 X X

Table 4. Results of D. Checked cells were selected as reverting operations
by participant. Gray cells can be generated with our model.

an understandable visualization of a complex operation and
2) provide all of the information related to a micro-versioning
operation. Our tool limited the number of candidates, however,
it can easily show more candidates by adding a “see more
candidates” button, for example.

Displaying the behavior of the source code after the micro-
versioning operation in a separate dialog sometimes provides
a user with useful information, but it makes the user inter-
face complex. We did not implement this feature because a
micro-versioning tool should have a lightweight user interface.
However, one participant reported that he experienced anxiety
when he used the proposed tool and previewing the behavior of
software might help reduce anxiety. However, a previous study
indicated that many programmers did not observe a preview
of the source code [21]. Thus, we cannot be certain whether
previewing the behavior of software is helpful.

Extracting Appropriate Candidates
Another issue is that the appropriate candidates differ accord-
ing to the programmers. There are several approaches to solve
this issue. One approach is displaying many indicators so that
all users can find their appropriate candidates by using the
micro-versioning tool. However, this approach increases the
number of inappropriate candidates and makes the user inter-
face complex. Another approach is using a more sophisticated
history model. Such a model may decrease the number of
candidates that the user wrongly wants to revert to (e.g., the
user overlooks the syntax error of the candidate). Yet another
approach is changing the behavior of the history model accord-
ing to the user. How to address this issue will be addressed in
future research.

Limitations
Our history model uses code executions as delimiters, but this
does not always work. For example, a programmer makes a
button and the event listener of the button (edit A). She then
executes the program. Finally, she adds the extra listener of
the button (edit B). The relation between edits A and B cannot
be extracted with our current implementation.

Using an AST can relax this restriction because it contains the
syntax relation between edit fragments. However, there are
several types of relations between fragments that cannot be
extracted using an AST. For example, the font size of a title and
that of a subtitle are related; thus, a programmer sometimes
wants to update two parameters in sync. However, there is no
relation between two parameters at the AST level. Our tool
worked well in the user study; however, it and an AST should
be combined to support more efficient micro-versioning.

We used the artificial programming tasks and edit histories
in the user study without the related context of exploratory
programming. We designed the tasks and histories based on
common backtracking situations and previous programming
studies to prevent them from being too artificial. All the partic-
ipants were recruited from our university. However, previous
studies showed that both university students and professional
programmers frequently conduct exploratory programming
and backtracking [23]. Our user study was small-scale and
it is insufficient to quantitatively prove the practical usability
of the system. Formal studies with a sufficient number of
participants and comparison are necessary for this purpose.

CONCLUSION
We referred to the version control operations during ex-
ploratory programming as micro-versioning. We analyzed
the problems that programmers encounter during micro-
versioning processes and defined the requirements for a tool
to support micro-versioning tasks. We also proposed a tool
based on these requirements. The interface of the tool displays
markers, indicators, candidate lists, and edit details in a text
editor. Users can select an option from the candidate list to do
micro-versioning tasks. The results of our user study indicate
that our tool satisfies the requirements we identified, and that
it is useful for programming and other tasks.

REFERENCES
1. Kent Beck. 2003. Test-driven development: by example.

Addison-Wesley Professional.

2. Joel Brandt, Philip J Guo, Joel Lewenstein, Scott R
Klemmer, and Mira Dontcheva. 2009. Writing Code to
Prototype, Ideate, and Discover. Software, IEEE 26, 5
(2009), 18–24. DOI:
http://dx.doi.org/10.1109/MS.2009.147

3. John Brooke. 1996. SUS-A quick and dirty usability scale.
Usability evaluation in industry 189, 194 (1996), 4–7.

4. Aaron G Cass and Chris ST Fernandes. 2007. Using task
models for cascading selective undo. In Task Models and
Diagrams for Users Interface Design. Springer, Hasselt,
Belgium, 186–201. DOI:
http://dx.doi.org/10.1007/978-3-540-70816-2_14

5. Eclipse 2016. Eclipse - The Eclipse Foundation open
source community website. (31 July 2016). Retrieved
July 31, 2016 from http://www.eclipse.org/.

6. EGit 2016. EGit. (31 July 2016). Retrieved July 31, 2016
from http://www.eclipse.org/egit/.

7. emacs 2016. Emacs. (31 July 2016). Retrieved July 31,
2016 from https://www.gnu.org/software/emacs/.

8. James Fogarty, Andrew J Ko, Htet Htet Aung, Elspeth
Golden, Karen P Tang, and Scott E Hudson. 2005.
Examining task engagement in sensor-based statistical
models of human interruptibility. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems (CHI 2005). ACM, Portland, Oregon, USA,
331–340. DOI:
http://dx.doi.org/10.1145/1054972.1055018

9. git 2016. Git. (31 July 2016). Retrieved July 31, 2016
from https://git-scm.com/.

10. Max Goldman, Greg Little, and Robert C Miller. 2011.
Collabode: collaborative coding in the browser. In
Proceedings of the 4th international workshop on
Cooperative and human aspects of software engineering
(CHASE 2011). ACM, Waikiki, Honolulu, HI, USA,
65–68. DOI:http://dx.doi.org/10.1145/1984642.1984658

11. Google Bug Prediction 2016. Google Bug Prediction. (24
July 2016). Retrieved July 31, 2016 from
http://google-engtools.blogspot.jp/2011/12/

bug-prediction-at-google.html.

12. gundo 2016. Gundo - Visualize your Vim Undo Tree. (29
March 2016). Retrieved July 31, 2016 from
http://sjl.bitbucket.org/gundo.vim/.

13. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang,
and Scott R Klemmer. 2008. Design as exploration:
creating interface alternatives through parallel authoring
and runtime tuning. In Proceedings of the 21st annual
ACM symposium on User interface software and
technology (UIST 2008). ACM, Monterey, CA, USA,
91–100. DOI:
http://dx.doi.org/10.1145/1449715.1449732

14. Shinpei Hayashi, Daiki Hoshino, Jumpei Matsuda,
Motoshi Saeki, Takayuki Omori, and Katsuhisa
Maruyama. 2015. Historef: A tool for edit history
refactoring. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER 2015). IEEE Computer Society, Montreal, QC,
Canada, 469–473. DOI:
http://dx.doi.org/10.1109/SANER.2015.7081858

15. Yun Young Lee, Sam Harwell, Sarfraz Khurshid, and
Darko Marinov. 2013. Temporal code completion and
navigation. In 35th International Conference on Software
Engineering (ICSE 2013). IEEE Computer Society, San
Francisco, CA, USA, 1181–1184. DOI:
http://dx.doi.org/10.1109/ICSE.2013.6606673

16. Erica Mealy, David Carrington, Paul Strooper, and Peta
Wyeth. 2007. Improving usability of software refactoring
tools. In Australian Software Engineering Conference
(ASWEC 2007). IEEE Computer Society, Melbourne,
Australia, 307–318. DOI:
http://dx.doi.org/10.1109/ASWEC.2007.24

17. Mathieu Nancel and Andy Cockburn. 2014. Causality: A
conceptual model of interaction history. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, Toronto, ON,
Canada, 1777–1786. DOI:
http://dx.doi.org/10.1145/2556288.2556990

18. Atul Prakash and Michael J Knister. 1994. A framework
for undoing actions in collaborative systems. ACM
Transactions on Computer-Human Interaction (TOCHI)
1, 4 (1994), 295–330. DOI:
http://dx.doi.org/10.1145/198425.198427

19. Bastian Steinert, Damien Cassou, and Robert Hirschfeld.
2012. Coexist: Overcoming aversion to change. ACM
SIGPLAN Notices 48, 2 (2012), 107–118. DOI:
http://dx.doi.org/10.1145/2384577.2384591

20. undotree 2016. EmacsWiki: Undo Tree. (31 July 2016).
Retrieved July 31, 2016 from
http://www.emacswiki.org/emacs/UndoTree.

21. Mohsen Vakilian, Nicholas Chen, Stas Negara,
Balaji Ambresh Rajkumar, Brian P Bailey, and Ralph E
Johnson. 2012. Use, disuse, and misuse of automated
refactorings. In 34th International Conference on
Software Engineering (ICSE 2012). IEEE Computer
Society, Zurich, Switzerland, 233–243. DOI:
http://dx.doi.org/10.1109/ICSE.2012.6227190

22. YoungSeok Yoon and Brad A Myers. 2011. Capturing
and analyzing low-level events from the code editor. In
Proceedings of the 3rd ACM SIGPLAN workshop on
Evaluation and usability of programming languages and
tools (PLATEAU 2011). ACM, Portland, OR, USA,
25–30. DOI:http://dx.doi.org/10.1145/2089155.2089163

23. YoungSeok Yoon and Brad A Myers. 2012. An
exploratory study of backtracking strategies used by
developers. In Proceedings of the 5th International
Workshop on Co-operative and Human Aspects of

http://dx.doi.org/10.1109/MS.2009.147
http://dx.doi.org/10.1007/978-3-540-70816-2_14
http://www.eclipse.org/
http://www.eclipse.org/egit/
https://www.gnu.org/software/emacs/
http://dx.doi.org/10.1145/1054972.1055018
https://git-scm.com/
http://dx.doi.org/10.1145/1984642.1984658
http://google-engtools.blogspot.jp/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.jp/2011/12/bug-prediction-at-google.html
http://sjl.bitbucket.org/gundo.vim/
http://dx.doi.org/10.1145/1449715.1449732
http://dx.doi.org/10.1109/SANER.2015.7081858
http://dx.doi.org/10.1109/ICSE.2013.6606673
http://dx.doi.org/10.1109/ASWEC.2007.24
http://dx.doi.org/10.1145/2556288.2556990
http://dx.doi.org/10.1145/198425.198427
http://dx.doi.org/10.1145/2384577.2384591
http://www.emacswiki.org/emacs/UndoTree
http://dx.doi.org/10.1109/ICSE.2012.6227190
http://dx.doi.org/10.1145/2089155.2089163

Software Engineering (CHASE 2012). IEEE Computer
Society, Zurich, Switzerland, 138–144. DOI:
http://dx.doi.org/10.1109/CHASE.2012.6223012

24. Young Seok Yoon and Brad A Myers. 2014. A
longitudinal study of programmers’ backtracking. In
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2014). IEEE
Computer Society, Melbourne, VIC, Australia, 101–108.
DOI:http://dx.doi.org/10.1109/VLHCC.2014.6883030

25. Young Seok Yoon and Brad A Myers. 2015. Supporting
selective undo in a code editor. In the 37th International
Conference on Software Engineering-Volume 1 (ICSE
2015). IEEE Computer Society, Florence, Italy, 223–233.
DOI:http://dx.doi.org/10.1109/ICSE.2015.43

http://dx.doi.org/10.1109/CHASE.2012.6223012
http://dx.doi.org/10.1109/VLHCC.2014.6883030
http://dx.doi.org/10.1109/ICSE.2015.43

	Introduction
	Related Work
	Linear Undo and Commenting Out
	Extended Undo Tools
	Version Control Systems
	History Management Models

	Literature Survey to Elicit Micro-Versioning Tool Requirements
	Our Micro-Versioning Tool
	Example Scenario
	Lightweight User Interface
	Visual Information
	Search Feature

	History Model
	1) Regional Redo
	2) Exclusive Edits
	3) Grouping Separated Edits
	4) Redo Propagation
	Enumeration of Candidates

	Implementation
	User Study
	Part I: Evaluation of Overall Tool
	Results

	Part II: Evaluation of History Model
	Results

	Discussion
	User Interface of Micro-Versioning Tool
	Extracting Appropriate Candidates
	Limitations

	Conclusion
	REFERENCES

