
AUTOMATIC GENERATION OF TUTORIAL FROM

UNIT TESTS

単体テストを用いたチュートリアルの自動生成手法

by

Hiroaki Mikami

三上裕明

A Senior Thesis

卒業論文

Submitted to

the Department of Information Science

the Faculty of Science, the University of Tokyo

on February 2, 2014

in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Takeo Igarashi 五十嵐健夫

Professor of Information Science

ABSTRACT

Understanding and learning the usage of the APIs are important to programmers,
but they are time consuming tasks. A tutorial which is a document composed of some
sample codes, their explanations and a list of sample codes is one way to understand
the usage of the APIs. Tutorials are currently written by library developers; however,
writing a tutorial is a tedious work. Therefore, there are cases that how to use the latest
APIs is not described in a tutorial because developers does not update the tutorial. To
deal with this issue, this thesis proposes a method that automatically generates a tutorial
from unit tests. This method first generates executable sample codes from unit tests. It
then uses program visualization technique to explain the sample codes. Future more, it
analyses a dependencies between tests to make a list of sample codes. The results of a
user study showed that tutorials generated by this method are more effective in helping
programmers learn APIs than the existing auto-generated document.

論文要旨

APIの理解と使い方の学習は、プログラマにとって重要であるが、時間のかかる作業で

ある。APIを理解するための方法の一つとして、チュートリアルがある。チュートリアル

は、複数のサンプルコード及びその説明と、それらのリストからなるドキュメントである.

現在、チュートリアルはライブラリの開発者が記述しているが、チュートリアルを書くこと

は手間がかかる。そのため、チュートリアルが更新されず、最新のAPIの使い方が、チュー

トリアルで説明されていない場合がある. この問題に対処するため、本論文では、単体テス

トからチュートリアルを自動的に生成する手法を提案する。この手法では最初に、単体テ

ストから実行可能なサンプルを生成する。次に, サンプルの説明を生成するために、プログ

ラム可視化の技法を用いる. また、サンプルコードのリストを作るために、単体テスト間

の依存関係を解析する。ユーザースタディにおいて、この手法を用いて生成されたチュー

トリアルを用いることで、既存の自動生成されたドキュメントの場合よりもAPIを効率的

に理解できるという結果が得られた。

Acknowledgements

I thank to Professor Takeo Igarashi for his comments, Daisuke Sakamoto for
his advice and suggestions on drafts. And I thank to Jun Kato and Hidehiko
Masuhara for their opinions about our approach.

Contents

1 Introduction 1

2 Related Works 3
2.1 Barrier to learn APIs . 3
2.2 Method to help learn APIs . 3
2.3 Method to maintain documents . 4
2.4 Program visualization . 4
2.5 Dependencies between tests . 4

3 Automatic Tutorial Generation from Unit Tests 5
3.1 Test Code Analysis Module . 6
3.2 Code Example Extraction Module 8

3.2.1 Generating code samples from unit tests 8
3.2.2 Clustering similar code samples 9

3.3 Explanation Generation Module 12
3.4 Tutorial Generation Module . 13

3.4.1 Identifying units under test 13
3.4.2 Extracting dependencies between tests 14
3.4.3 Generating a tutorial . 16

4 User Study 19
4.1 Methodology . 19
4.2 Results . 22

4.2.1 How useful the tutorial generated by the proposed approach
is to lean APIs. 22

4.2.2 Feedback about the improvement of the approach 22

5 Discussion and Future Works 24
5.1 Discussion . 24
5.2 Future Works . 25

6 Conclusion 26

A Sample Inputs 27
A.1 Library Source Code . 28
A.2 Test Codes . 30

References 31

iv

List of Figures

3.1 An overview of the proposed automatic tutorial generation method 5
3.2 A html page generated by this method. A) the sample code, B)

the buttons and the slider that step forward and backward, C)
the area that visualizes stack, D) the instance of java.lang.Class,
E) the instance of prognjava.util.HashMap and F) the area that
shows console outputs of the program. 12

3.3 The dependencies between tests in Listing 3.6. The dotted line
represents the edge of Ginternal and the normal lines represent the
edges of Gnormal. 16

3.4 An example of the dependencies between tests. 18
3.5 The tutorial that shows overview of Figure 3.4API. 18
3.6 The tutorial that is generated from Appendix A. A) The html page

that shows example, B) The top page of the generated tutorial and
C) The list of Graph class tutorial. 18

4.1 The Javadoc document used in the user study. A) the code exam-
ple extracted by UsETeX . 20

4.2 The tutorial used in the user study. A) the example page of the
tutorial. and B) the top page of the tutorial. 21

v

List of Tables

4.1 Participants of the user study. 19
4.2 Summary of the user study results. The cells contain tutorial if

the participant completed a task successfully by using the pro-
posed tutorial only, contain Javadoc if the participant completed
a task by using the Javadoc only and contain both if the partici-
pant completed a task by using both of the documentations. 23

4.3 The results of the post questionnaire. Each question is 7-point
scale. Rating of 1 represents strong disagreement and Rating of 7
represents strong agreement. 23

vi

Listings

3.1 A typical example of test case written by using JUnit4. 7
3.2 The executable code example that is extracted from testAdd test

case in Listing3.1. The main class is PriorityQueueTest. 10
3.3 An example that the similarity is not 1 but the programs explain

completely same API usage. 11
3.4 A sample program that tests swing classes 11
3.5 An example of the test case that has no assertion statement 13
3.6 An implementation of a programming language and its test cases. . 15
4.1 An example of the program written by a participant. He completed

Task C but did not complete Task B. 21
5.1 A test case that generates an not-executable code example. 24

vii

Chapter 1

Introduction

Recently, application programming interfaces (APIs) of the libraries that third
parties provides(for example, open source libraries) are widely used in the popular
software in order to save cost and improve quality of the source codes [10], [12].
In particular, it is extremely difficult to develop modern software without these
APIs. However, because of the APIs complexity, it is difficult and time consuming
for developers to understand the usage of the APIs and to use the APIs [27], [30],
[28].

Currently, most libraries are documented to help for understanding the APIs.
Although the documentations can be valuable to understand the APIs, previous
researches have shown that it is very difficult to write the documentations and to
maintain them. As a result, many documentations are out of date and erroneous
[8], [9].

Many studies have shown that the code examples are key resources for un-
derstanding and using the APIs [30], [27], [28]. So some automatic code example
generation methods have been proposed [36], [15], [34], [20], [5]. These example
generation methods use the generated samples in an API documentation such as
Javadoc or a code recommendation system. For example, eXoaDocs[20] aims at
adding code examples into documents created by Javadoc and MAPO [34] is the
tool that recommends code snippets by mining the client code repositories. But
API documentation and code recommendation system have two problems:

• it is difficult to determine which elements (e.g. functions, methods and
classes) are optional [30], and

• they are not suitable to understand and learn the complex APIs usages
that are found in frameworks. For example, many frameworks assume that
developers use the APIs in specific order [8].

To compensate for the problems of API documentation, some libraries provide
the documentations called tutorial or getting started document. The tutorial is
composed of the list of sample codes and their explanations. And the order of
the list is not mechanical order such as alphabetical order but is created so that
developers can understand the APIs if they read it in order. By using tutorials,
developers can know how to use the basic APIs of the library [8].

However, the tutorials must be written and maintained by the contributors
and writing the tutorials is more difficult than writing the API documentations
[8]. As a result, the tutorials more often become out of date than the API doc-
umentations, for example, the code samples in the tutorial may not be able to
be compiled in the latest version of APIs and the APIs in the tutorial may be
currently deprecated. Although there are techniques to help for creating samples
used in the tutorial [16][1], contributors still must write all of the code example

1

used in the tutorial even if they use this technique. To deal with this issue, this
thesis proposes a method that automatically generates a tutorial. This method
is related to unit testing, program visualization technique and dependencies be-
tween tests.

Unit testing have become popular recently because of the spread of the agile
development methods [3]. The test codes can be sources of the code examples and
have some advantages [15]. First, the test codes are self-contained and executable
unlike other code example sources such as web page and client code repository.
Second, test codes are reliable and latest APIs are used in them because API con-
tributors write and maintain test codes. Program visualization is technique that
shows program execution to programmers. Many tools that visualize program
have been proposed for the purpose of debugging and education [17], [7], [29],
[22]. Program visualization is helpful for learning the relation between the source
code that is a static representation of the program and the program execution
that is a dynamic process of the program [17] [6]. Dependencies between test is a
concept that is related to debugging tests and maintaining tests. Because of their
existence, small bug of software causes failure of many test cases like a domino
effect and debugging of software becomes difficult. So it should be removed from
the test codes, but cannot be removed completely [21] [11]. There are several
methods that use dependencies between test to localize defects quickly [21], [13].

The proposed method consists of four modules. Test code analysis module
analyses the test code and classifies the test programs in order to use these clas-
sification results in the other modules. Code example extraction module extracts
the executable code examples from unit tests, and clustering them. Explana-
tion generation module generates the html pages that contain code examples and
their explanations by using program visualization technique. The tutorial gener-
ation module generates order relation between examples by using dependencies
between tests and dependencies in the program and makes tutorials by using this
order relation.

In order to evaluate usefulness of the proposed method, we ran the user study.
The results of the user study indicates that developers can perform more pro-
gramming tasks if they use the tutorial generated by the tutorial than if they
use Javadoc that contains code examples extracted from unit tests. The main
contributions of this thesis are

• a method that automatically generates lists of the tutorials by using depen-
dencies between tests

• an algorithm that extracts executable code examples from unit tests, and

• implementing the prototype of the method.

2

Chapter 2

Related Works

2.1 Barrier to learn APIs

Many studies [27], [30], [28] have been conducted to identify the barrier in learning
APIs. Robillard et al. analyzed documentations. They showed that code exam-
ples are key resources to learn APIs and classified code examples into snippets,
tutorials and applications [27] [28]. Scaffidi [30] investigated the inadequacy of
documentations and showed the weakness of tutorials and API documentations.

Dagenais et al. [8] [9] analyzed documentations in open source projects and
the way to maintain them. They indicated that tutorial maintenance is more
difficult than API documentation maintenance and tutorials are more appropriate
to learn how to use framework than API documents.

2.2 Method to help learn APIs

Several approaches to generate code examples automatically have been proposed.
Kim et al. [20] proposed eXoaDocs that extracts code examples from client code
repositories. That method separated into four modules: summarization, repre-
sentation, diversification and ranking. Xie et al. proposed a framework that gets
a method name, class name or package name as inputs and extracts method in-
vocation sequence from open source repository [34]. Nasehi et al. shewed that
unit tests can be good resources of code examples, and proposed an approach
that extracts code examples from unit tests and integrates them into API doc-
umentation to improve the learnability of APIs [25]. Ghafari summarized the
problems concerning code example extraction from unit tests and proposed an
overview of the algorithm that extracts code examples from unit tests for code
recommendation systems [14] [15]. The algorithm consists of two steps: identify
units under test and extract usage example from test codes. Zhu et al. proposed
the algorithm that extract code examples from test codes [35] [36]. That algo-
rithm uses test scenario and four code pasterns. Test scenario is a self-contained
subset of test code and explains an independent API usage.

Several code completion systems that use code examples have been proposed.
Mandelin et al. defined jungloid as a code example that explains how to generate
single output type from single input type, and proposed an algorithm that gen-
erates jungloids from API signatures and sample codes [24]. GraPacc proposed
by Nguen et al. [26] is a tool that extracts context-sensitive information from
the code under editing finds the best match code pattern and uses the pattern
to complete code. Lv et al. [23] proposed a new algorithm that extracts method
invocation sequences to instantiate objects from API library codes and selects
the sequences that are best matching to destination and source types. Blueprint

3

[4] is an interface that searches the sample codes in web and presents the search
results.

2.3 Method to maintain documents

Ginosar et al. [16] proposed an interface that helps write multi-stage code exam-
ples by using revision control algorithm. The author can propagate a change of a
certain stage to other stages by using that interface. Cumiki [1] is a web service
that helps programmers teach and learn a program by annotating the existing
code. CommentWeaver [19] is an extension of Javadoc to reduce the amount of
comments that need to be written by developers. Python doctest module [2] finds
texts that look like Python program and its expected results from the docstring
that is a string literal documenting the program. It can be used to check that
the contents of the docstring is consistent with the program and to write the
document including executable examples.

2.4 Program visualization

Several tools that visualize run-time behavior of program have been proposed
for educational or debugging purposes. jGRASP [7] is a lightweight Java inte-
grated development environment (IDE) that visualizes data structures. It was
developed for educational purposes. Vebugger proposed by Rozenberg et al. [29]
is a debugger that can visualize the state of selected objects by using templates
written in HTML and CSS. Online Python Tutor [17] is a web-based program
visualization tools for educational purposes. It is easy for computer novices to
use Online Python Tutor because they need not to install or configure software.
Lotoza et al. proposed a new approach that visualizes call graph interactively to
help programmers navigate along control flow.

2.5 Dependencies between tests

Van et al. [32] proposed test refactoring approach that reduces test code duplica-
tion and dependencies between tests to improve readability and maintainability
of the unit tests. Gaelli et al. [11] showed that 84% to 95% of the test cases have
dependencies between tests by conducting four case studies.

JExample [21] is a JUnit extension that is developed to help programmers
debug test code by using dependencies between tests. Programmers can use
dependencies between tests and reuse a test case by adding@Depends annotations
into test cases. Gaelli et al. [13] defined dependencies between tests by using
coverage set that is a set of methods that are invoked by the test case, and
proposed an algorithm that extracts this dependencies from test codes written in
xUnit frameworks. Haensenberger et al [18]. applied the dependencies based on
coverage set to JExample, and proposed an approach that automatically converts
test cases written in JUnit into test case written in JExample that contains
@Depends annotations. The approach can extracts the dependencies between
instances under test.

4

Chapter 3

Automatic Tutorial Generation from Unit

Tests

In this chapter, we describe the method that automatically generate a tutorial.
Figure 3.1 shows the overview of the proposed method. First, Test Code Analysis
Module receives the library source code and its test codes as inputs, and classi-
fies the test programs into three groups by analyzing the run-time information
of the unit tests. Next, Code Example Extraction Module receives these groups
as inputs. It outputs the code examples of the library by generating code exam-
ples and clustering them. Explanation Generation Module, then, receives these
examples and outputs the html pages that show the code examples and visual-
ize the run-time behavior of the example. Finally, Tutorial Generation Module
receives these html pages and the code groups of the test codes. And it outputs
the tutorial of the library by extracting the dependencies between tests and using
them.

Code Explanation
Extraction Module(Section 3.2) Tutorial Generation Module(Section 3.4)

generating code examples identifying units under test

library and its tests(Input)

Test Code Analysis Module(Section 3.1)

groups of the test codes

clutering code examples

code examples

Explanation Generation
Module(Section 3.3)

code examples

generating tutorial

sample html page

extracting dependencies

dependencies between tests

units under test

tutorial(Output)

Figure 3.1: An overview of the proposed automatic tutorial generation method

5

The prototype of this method developed in this thesis is for libraries that are
written in Java and are tested by using JUnit41. Its backend was written in scala2

and its frontend was written in JavaScript. However, they can be extended to
the libraries that are written in a general object oriented language that uses class
and are tested by using a general testing framework.

3.1 Test Code Analysis Module

In this module, the run-time information of unit tests are analyzed and we classify
the programs in the test codes into the following groups:

• programs that works as a part of the main method,

• programs that works as the member of the main class, and

• substitute programs such as mock objects and stubs.

We call the first list Mains, call the second list Members, and call the third list
Substitutes below.

The test codes that use current testing framework are sometimes distributed
to reduce the amount of the test codes and to save test maintenance cost, and
contain substitute programs that implement only functions used in tests. As a
example of Mains, Members and Substitutes, consider the program in Listing 3.1.
This is a simple test case of java.io.PriorityQueue class and shows typical test
code written by using JUnit4. To execute testAdd test case, we must invoke
setup and testAdd method in order. These methods should be main method
in the generated example, therefore they are in Mains. Although checkQueue
method is declared in the test code, it is in not Mains but Members because
it is a general assertion method about queues. Finally, MockComparator class
declared in MockComparator.java is in Substitutes because it is a mock class.

To obtain three lists, this thesis focuses on a currently running object called
this in Java or C++, and defines Mains , Members and Substitutes as follows.

Mains is a list of members(e.g. method, field and constructor) that satisfies
at least one of the two conditions:

• It is a method that is invoked first in the test case.

• Its this and this of the first method invocation are equal and there is no
caller method.

Members is a list of members that satisfies at least one of the two conditions:

• Its this and this the element in Mains is equal and there is a caller method.

• It is static member and it is declared by the class that declares one ofMains.

Finally, Substitutes is a list of members that are declared in test codes and are
not in either Mains or Members.

To analyze a test case using this definitions, we obtain the information of
method invocation and field access during the test case execution. Next, we use
a stack containing this information to distinguish Mains and Members. This
stack is used as the call stack, and a method has no caller method if it is invoked
when the stack is empty.

The detail of the proposed algorithm is follows.
1http://junit.org/
2http://www.scala-lang.org/

6

MockComparator.java

1 package test;
2 import java.util.Comparator;
3

4 public class MockComparator extends Comparator<String> {
5 public int compare(String e1, String e2) {
6 ...
7 }
8 }

PriorityQueueTest.java

1 package test;
2
3 import static org.junit.Assert.∗;
4 import org.junit.Test;
5 import org.junit.Before;
6 import java.util.PriorityQueue;
7

8 public class PriorityQueueTest {
9 protected PriorityQueue<String> queue;

10

11 public static void checkQueue(PriorityQueue<String> queue, int size,
String front) {

12 assertEquals(size, queue.size());
13 assertEquals(front, queue.element());
14 }
15
16 @Before
17 public void setup() {
18 queue = new PriorityQueue<String>(11, new MockComparator());
19 }
20
21 @Test
22 public void testAdd() {
23 this.queue.add("Foo");
24 this.queue.add("Bar");
25 checkQueue(queue, 2, "Bar");
26 }
27
28 @Test
29 public void testRemove() {
30 ...
31 }
32 }

Listing 3.1: A typical example of test case written by using JUnit4.

Step. 1 Obtain the classes that is declared in the test codes by using eclipse
JDT3.

Step. 2 Prepare the empty stack.

Step. 3 By using javassist4, insert the following program before the field access
and the beginning of the method.

(a) Obtain a member information and this of the member.

(b) Check this of the member obtained in (a), and add the member into
the appropriate list according to the definitions.

3https://eclipse.org/jdt/
4http://www.csg.ci.i.u-tokyo.ac.jp/ chiba/javassist/

7

(c) Push the method invocation information to the stack if the member
is a method.

Step. 4 Insert the program that pops the stack in the ending the method in the
same way as Step. 3.

Step. 5 Execute each unit test by using JUnit4 API, and obtain Mains, Members
and Substitutes.

In this thesis, javassist is used to simplify the implementation. However, this
algorithm can be implemented by combining the language parser and the compiler
or the interpreter even if the language does not have the library that changes the
behavior of the program dynamically.

Consider testAdd test case in Listing 3.1 as a sample input of this algorithm.
In this example, the algorithms analyses the program as follows:

1. got MockComparator and PriorityQueueTest as the classes declared in the
test code by parsing two java files.

2. added setup method into Mains because setup was invoked firstly.

3. pushed setup to the stack.

4. added the constructor of MockComparator into Substitutes because this of
the constructor was different from the this obtained in 2 and the constructor
was declared in MockComparator class.

5. ignored the constructor of PriorityQueue<String> because it was not de-
clared in classes obtained by 1.

6. added queue field into Members because its this and this obtained in 2 were
equal and the stack was contained setup.

7. analyzed the test case until the end of execution, similarly.

The final output of the algorithm was

• the elements of Mains were setup and testPush,

• the elements of Members were queue and checkStack, and

• the element of Substitutes was the constructor of MockComparator.

3.2 Code Example Extraction Module

In this module, executable code examples firstly are generated by using the three
groups described in Section 3.1. Next, we cluster code examples and select a
representative code examples for each cluster.

3.2.1 Generating code samples from unit tests

This section describes the algorithm that generates code samples from unit tests.
Some methods or ideas that extract code examples from unit tests have been
proposed [36], [15]. Unlike them, the proposed algorithm generates executable
code examples.

To generate executable code examples, we declare a class that contains the
main method generated from Mains and other members generated from Members
to generate executable code examples. The detail of our code examples generation
algorithm is as follows:

8

Step. 1 Find the method that has org.junit.Test annotation from Mains and ob-
tain the class that declares this method.

Step. 2 Declare a class with the same name as the class obtained in Step. 1. This
is because some test cases use the information of the declaring class, for
example, the class name might be used as a string.

Step. 3 Declare the fields and methods that are in Members as the members of
the class declared in Step. 2.

Step. 4 Add the method that its name is main into the class declared in Step.
2. This method works as the main method.

Step. 5 Generate the body of the main method by lining up the body of the
methods that are in Mains. Put the method body in braces({, }) to deal
with the situation that there are duplicate names of local variable.

Step. 6 Remove super. from generated program, for example super.setup();

is replaced by setup();.

Step. 7 Obtain the package declaration from the file declaring the class in Step.
1 and add this declaration into the sample.

Step. 8 Obtain the import declarations from the file declaring Mains or Members
and add this declaration into the sample.

Step. 9 Obtain the files that declares Substitutes and add those into the sample.

Consider testAdd test case in Listing 3.1 as a sample input, again. First,
because PriorityQueueTest.testAdd method has org.junit.Test annotation and is
in Mains , the name of a main class is PriorityQueueTest. Because Members
are queue field and checkStack method, they are declared as a member of Pri-
orityQueueTest. Next, the main method is generated by putting the bodies of
setup and testAdd methods in braces and lining up them. Because Mains and
Members are declared in PriorityQueueTest.java, the package declaration and the
import declarations are obtained from PriorityQueueTest.java and is added into
the example. Finally, MockComparator.java is added into sample because the
element of Substitutes is declared in MockComparator.java.

As a result, the proposed algorithm generates Listing 3.2 from testAdd test
case in Listing 3.1.

3.2.2 Clustering similar code samples

There are often some similar test cases in test codes. The generated tutorial
becomes difficult to understand if we use all of the samples from these similar
test cases. So it is necessary to assemble the similar examples.

The algorithm that assembles similar examples is based on the algorithm
algorithm [36]. In that algorithm, the samples are clustered by using the similarity
between samples, and select the representative sample for each cluster.

The similarity relies on the method invocation sequence of the sample. In this
thesis, the method invocation sequence is basically defined as a sequence that
contains methods that are invoked by Mains or Members and are not declared in
the test codes. In the case of the sample in Listing 3.2, the method invocation
sequence are

• the constructor of PriorityQueue<String>,

9

MockComparator.java

1 package test;
2 import java.util.Comparator;
3

4 public class MockComparator extends Comparator<String> {
5 public int compare(String e1, String e2) {
6 ...
7 }
8 }

PriorityQueueTest.java

1 package test;
2 import static org.junit.Assert.∗;
3 import org.junit.Test;
4 import org.junit.Before;
5 import java.util.PriorityQueue;
6

7 public class PriorityQueueTest {
8 protected PriorityQueue<String> queue;
9 public static void checkQueue(PriorityQueue<String> queue, int size,

String front) {
10 assertEquals(size, queue.size());
11 assertEquals(front, queue.element());
12 }
13

14 public void main() {
15 {
16 queue =
17 new PriorityQueue<String>(11, new MockComparator());
18 }
19 {
20 this.queue.add("Foo");
21 this.queue.add("Bar");
22 checkQueue(queue, 2, "Bar");
23 }
24 }
25 }

Listing 3.2: The executable code example that is extracted from testAdd test
case in Listing3.1. The main class is PriorityQueueTest.

• PriorityQueue<String>.add,

• PriorityQueue<String>.add,

• PriorityQueue<String>.size, and

• PriorityQueue<String>.element.

But there is a problem with the definition. For example, although the sim-
ilarity of testCase1 and testCase2 in Listing 3.3 is 0.75 by the definition, the
API usages explained by them are fully equal. To deal this problem, we remove
consecutive duplicated method invocation subsequences so that the similarity of
testCase1 and testCase2 in Listing 3.3 is 1. In detail, we remove all s[i, j] defined
by the formula 3.1.

10

1 public void testCase1() {
2 Stack<int> stack = new Stack<int>();
3 for (int i = i; i < 10; i++) {
4 stack.push(i);
5 }
6 assertEquals(9, stack.lastElement());
7 }
8 public void testCase2() {
9 Stack<int> stack = new Stack<int>();

10 for (int i = i; i < 6; i++) {
11 stack.push(i);
12 }
13 assertEquals(5, stack.lastElement());
14 }

Listing 3.3: An example that the similarity is not 1 but the programs explain
completely same API usage.

s[i, j] = s[j + 1, 2j − i+ 1] (3.1)

The symbol s[i, j] denotes the method invocation subsequence that begins at i
and ends at j.

Listing 3.4 is a program that use swing of Java. The method invocation
sequence by the initial definition is as follows:

1. the constructor of JPanel,

2. the constructor of JLabel,

3. JPanel.add,

4. the constructor of JLabel,

5. JPanel.add,

6. the constructor of JButton,

7. and JPanel.add.

Because the formula is satisfied if i is 2 and j is 3, we remove the constructor
of JLabel and JPanel.add. As a result, the method invocation sequence in List-
ing 3.4 is the constructor of JPanel, the constructor of JLabel, JPanel.add, the
constructor of JButton and JPanel.add.

1 @Test
2 public void test1() {
3 JPanel panel = new JPanel();
4 panel.add(new JLabel("foo"));
5 panel.add(new JLabel("bar"));
6 panel.add(new JButton("button"));
7 }

Listing 3.4: A sample program that tests swing classes

11

3.3 Explanation Generation Module

In this module, we generate explanations of code examples by using program
visualization technique. The program visualization method in this thesis is based
on the method used in Online Python Tutor [17]. That method is divided into
backend and frontend. Backend executes the code example and obtains the exe-
cution trace of the example. And frontend visualizes the execution trace in web
browser.

In the original method, the data such as an instance of class is converted
into JSON format5. We encode basically the data in JSON format by using
the information of the fields of the class. However, the example used by this
method is written in Java unlike a program of Online Python Tutor and is the
more complex program than the program for educational purpose that is main
purpose of Online Python Tutor.

To address these differences, the encoding method differ from the method de-
scribed above in two cases. First, we encode the instance in JSON format by using
toString method instead of the field information if the instance is not declared
in the target library. For example new java.lang.StringBuffer("test") is
encoded as test if StringBuffer class is not declared in the target library. This
is in order to remove the unimportant information to learn APIs and to prevent
the image of the program execution from being bloated. Next, we encode the
instance in JSON format as a data structure rather than as a class if the instance
belongs to java.util.Map, java.util.List, java.util.Set or Array. For example, the
instance of java.util.Map is encoded as the set of the pair of key and value. This
is because the data structure of Java, such as map, list and set is a complex class
in reality.

A

B

C D
E

F

Figure 3.2: A html page generated by this method. A) the sample code, B)
the buttons and the slider that step forward and backward, C) the area that
visualizes stack, D) the instance of java.lang.Class, E) the instance of progn-
java.util.HashMap and F) the area that shows console outputs of the program.

In frontend, we generate the html page from the execution trace like Fig-
ure 3.2. Because of the encoding method mentioned above, the instance of
java.lang.Class in this screenshot is visualized as string(see Figure 3.2-D) and
the instance of java.lang.HashMap is visualized as a pair of key and value(see
Figure 3.2-E). The only difference from the original visualization method is how
to visualize the information of the static fields. Although static fields are ren-
dered in the heap area in the original method, static fields are rendered in the
stack area in the proposed method(see Figure 3.2-C). This is in order to reduce

5http://json.org/

12

the number of objects placed in the heap area.
In implementation, we use Play Framework6 to generate JSON texts, Viz.js7

to decide the layout of data and use highlight.js8 for the purpose of syntax high-
light.

3.4 Tutorial Generation Module

In this module, we extract dependencies between tests, first. Next, we generate
a list of sample codes by using dependencies between tests and dependencies
between classes. Finally, we generate a list of sample codes for each API in the
similar way to help readers learn the usage of the specific API.

3.4.1 Identifying units under test

We identify the methods under test to use in extracting dependencies between
tests. The algorithm used in this thesis is combined the algorithm using dynamic
slicing proposed [15] and the algorithm using naming convention [36]. We describe
the method that identifies the units under test of the certain test case.

First, we collect the methods that are invoked by Mains or Members and are
not declared in the test codes and treat them as the candidates of units under
test.

1 public void testWithoutAssertion() throws Exception {
2 ...
3 java.io.FileReader reader = new java.io.FileReader(file);
4 reader.read();
5 ...
6 }

Listing 3.5: An example of the test case that has no assertion statement

Next, the algorithm using dynamic slicing is tried to apply. Although the
algorithm assumes that the test case has some assertion statements, there are
test cases that have no assertion statements. For example, testWithoutAsser-
tion in Listing 3.5 is a typical test case that has no assertion statements and
it tests whether FileReader.read method can be executed without throwing any
exceptions.

If test case has no assertion statement, the algorithm using naming convention
is tried to apply. However, the name of test case sometimes does not contain the
information of the units under test. For example, the name test case has no
information of units under test if the name is associated with the id of the bug
tracking systems. To deal with such cases, We change the definition of the name
similarity between the test case name and the name of candidate method as
shown in formula 3.2.

NameSimilarity =
2× |C1 ∩ C2|

|C1|+ |C2| − 2× |CommonWords|
(3.2)

Here the symbol C1 denotes the set of words that is extracted by splitting camel-
cased name of the method, C2 denotes the words set of the test case name

6https://www.playframework.com/
7https://github.com/mdaines/viz.js/
8https://highlightjs.org/

13

and CommonWords denotes the set of the common words in the names of the
candidate methods and the test case name.

Using CommonWords prevents the influence of the string deciding the pro-
gram structure (e.g. package name) and decrease the name similarity when the
test case name has no information of units under tests. Consider the case that
the test case name is someLongPackageName.TestBugs.test001 and the name of
one of the candidate method is someLongPackageName.Class as a example. Al-
though the test case name does not indicate that the units under test of this
test case is someLongPackageName, the name similarity of the original defini-
tion in [36] is about 0.67 that seems to be high on account of the influence of
the package name(someLongPackageName). If all candidate methods belong to
someLongPackageName package or its subpackages, the name similarity of the
formula 3.2 becomes 0.

If the similarity of all of the candidates is less than a parameter, that is namely
threshold, the results of the algorithm using naming convention is not used. In
this thesis, threshold is set to 0.

Finally, the method invoked lastly is identified as the units under test if the
units under test cannot be identified by both of the two algorithm. Because the
test case that has no assertion statements often tests whether the program can
be executed to the last(see Listing 3.5 as a example), the method invoked lastly
is probably the most important method in the test case.

3.4.2 Extracting dependencies between tests

In this section, we described the definition of dependencies between tests used in
this approach and the algorithm to extract the dependencies. This algorithm is
based on the dependencies based on coverage set [13].

While the dependencies based on coverage set is proposed to debug unit tests
efficiently, the proposed dependencies between tests is defined to determine the
test cases that are needed in tutorial and to generate the order relation used for
making a list of the tutorial.

To achieve two purposes, we defined two types of dependencies between tests:
(1) normal dependencies and (2) internal dependencies. A test case X depends
normally on a test case Y if all of the units under the test case X are invoked
from Mains or Members of the test case Y. And a test case X depends internally
on a test case Y if all of units under the test case X are invoked during the test
case Y execution and the test case X does not depends normally on the test case
Y. The fact that X depends normally on Y means that the API usages explained
by Y help readers understand the API usages of the test case X. And the fact
that X depends internally on Y means that understanding API usages of Y is
needed to understand the internal processing of X.

14

Compiler.java

1 public class Compiler {
2 ...
3 public Compiler() { }
4 public Compiler(Settings settings) { ... }
5 public String convertTabToSpace(String str) {
6 return str.replace("\t", "␣␣␣␣");
7 }
8 public AST parse(String text) {
9 String program = convertTabToSpace(text);

10 return ... ;
11 }
12 public byte[] compile(AST ast) {
13 return ... ;
14 }
15 }

test codes of Language

1 @Test
2 public void testConvertTabToSpace() {
3 assertEquals("␣␣␣␣", new Compiler().convertTabToSpace("\t"));
4 }
5
6 @Test
7 public void testParse() {
8 Compiler lang = new Compiler();
9 AST ast = lang.parse(...);

10 assertFalse(ast != null);
11 ...
12 }
13
14 @Test
15 public void testCompile() {
16 Compiler lang = new Compiler(new Settings());
17 AST ast = lang.parse(...);
18 byte[] resutls = lang.compile(ast);
19 ...
20 }

Listing 3.6: An implementation of a programming language and its test cases.

As a example of two dependencies, consider Listing 3.6 that are the compiler
of a programming language and its test case. First, the units under testConvert-
TabToSpace is Compiler.convertTabToSpace, the units under testParse is Com-
piler.parse and the units under testCompile is Compiler.compile by the algorithm
described in section 3.4.1. Next, since testCompile invokes Compiler.parse from
testCompile that is in Mains, testCompile depends normally on testParse. Fi-
nally, since testParse invokes Compiler.convertTabToSpace from Compiler.parse
that is not in either of Mains and Members, testParse depends internally on
testConvertTabToSpace.

The algorithm to generate the graph of the dependencies between tests is as
followings.　

Step. 1 To assemble test cases into equivalent test cases, we generate the graph
G′ that

• its node set is a set of the test cases

• and its edge set contains the edge from the test case X to the test
case Y if the test case Y depends on the test case X.

15

Step. 2 For each test case X, We finds the test case that are contained in the
cycle containing the test case X and treat these test cases and the test
case X as the equivalent test case of X.

Step. 3 We generate the graph G that

• its node set is a set of the equivalent test cases obtained in Step. 2

• and its edge set contains the edge from X to Y if the graph G′

contains the edge from one of the test case in Y to one of the test
case in X.

Step. 4 Finally, the transitive reduction of the graph G is computed. And we
obtained the graph of the dependencies between tests.

We apply this algorithm to both of the normal dependencies and internal depen-
dencies, and obtain Gnormal and Ginternal.

testConvertTabToSpace

testParse

testCompile

Figure 3.3: The dependencies between tests in Listing 3.6. The dotted line rep-
resents the edge of Ginternal and the normal lines represent the edges of Gnormal.

Figure 3.3 shows Gnormal and Ginternal of the Listing 3.6. The dotted line is
the edge of Ginternal, that is internal dependencies, and the normal lines are the
edges of Gnormal, that is normal dependencies.

3.4.3 Generating a tutorial

In this section, we describe the method that generates a tutorial from the results
so far. First, this method obtains the test cases that do not depends on any test
cases, and treats these as the examples that show practical usages of the library.
Next, it generates a tutorial that helps readers learn API usages that is explained
by these test cases to show API overview. Finally, it generates the tutorials for
each methods to help learn the usages of the methods that are under test. And
we use the algorithm that generates lists from sample code sizes, dependencies
between tests and dependencies between classes under test to generate a list of
tutorial.

The detail of the method to generate tutorial is as follows:

Step. 1 We generates dependencies between classes that are declared in the li-
brary. The class X depends on the class Y if the class X cannot be
compiled without the class Y.

16

Step. 2 We obtain the equivalent test cases that are not depended normally on
any equivalent test cases and the equivalent test cases that are not de-
pended internally on any equivalent test cases. We name the intersection
of the two equivalent test cases seeds. Seeds are thought to show the
practical usages of the library.

Step. 3 We find the test cases that is depended on by seeds and add these test
cases into seeds. To decide the test cases used in the tutorial explaining
the API overview, we continue this operation until seeds do not change.
The test cases that use the deprecated methods are excluded from seeds
because such test cases do not explain latest API usages.

Step. 4 We generate a tutorial from seeds obtained in Step. 3 by using the
following algorithm:

a We cluster the seeds by using the class under test that is a class
declaring units under test to assemble the usages of the same class.

b For each cluster, we obtain the subgraph of Gnormal induced by the
cluster, and compute a topological sort [33] by using the number of
methods that are invoked by Mains or Members.

c We generate an order relation among the clusters by using the de-
pendencies between classes obtained in Step. 1 and the dependen-
cies between tests. In this relation order, the cluster X is more
than the cluster Y if and only if the clusters satisfy one of the two
conditions: (1) there is a path in dependencies between tests from
the element of the cluster Y to the element of the cluster X and (2)
there is a path in the dependencies between classes from the class
under the cluster Y to the class under the cluster X.

d We compute a topological sort by using the number of classes that
are used by the test cases in the cluster to generate a list of the
clusters.

e By converting the test case into the HTML page that shows the
sample and visualizes it, we generate a tutorial that explain the
API overview. The title of each HTML page is a name of the test
case that is example source.

Step. 5 We do Step. 3 and Step. 4 for each method that is under test. Initial
seeds are the test cases that their units under test is that method.

Consider the dependencies in Figure 3.4 as an input of the method. Figure
3.4 represents the dependencies between tests. The dotted lines mean the edge of
internal dependencies and the normal lines mean the edge of normal dependencies.
Further more, we assume that there are no edges in the dependencies between
classes generated in Step. 1 of the algorithm.

First, because testCompile is not depended on by any test cases, the initial
seed is testCompile. Next, seeds of the tutorial that shows the API overview
are testCompile, testWriteFile, testParse and testReadFile because Gnormal has
paths that are from testCompile to these test cases.

We cluster seeds and obtain two clusters: (1) testReadFile, testWriteFile and
(2) testParse, testCompile because the class under test of first cluster is IO and the
class under test of second cluster is Compiler. Next, we compute a topological sort
for each cluster, and obtains two lists: testReadFile, testWriteFile and testParse,

17

IOTest.testReadFile

(2 methods are invoked)

CompilerTest.testParse

IOTest.testWriteFile

(4 methods are invoked)

CompilerTest.testCompile

CompilerTest.testConvertTabToSpace

Figure 3.4: An example of the dependencies between tests.

testCompile. Third, we generates an order relation defining that the cluster of
IO is more than the cluster of Compiler. Finally, we obtain Figure 3.5 as the list
of the tutorial that shows the API overview.

IO class Compiler class

IOTest.testReadFile

IOTest.testWriteFile

Compiler.testParse

Compiler.testCompile

Figure 3.5: The tutorial that shows overview of Figure 3.4 API.

Figure 3.6 is an example of the whole method. It shows the tutorial that is
generated from Appendix A by this method.

A B

C

Figure 3.6: The tutorial that is generated from Appendix A. A) The html page
that shows example, B) The top page of the generated tutorial and C) The list
of Graph class tutorial.

18

Chapter 4

User Study

We conducted a user study to evaluate the proposed approach. The user study
had the following goals.

1. Investigating how useful the tutorial generated by the proposed approach
is to lean APIs.

2. Collecting feedback about the improvements of the approach.

In the user study, we documented Commons CLI1 by using the proposed ap-
proach. Commons CLI is the library for parsing command line arguments and
for printing help message of the command line options. The reasons of selecting
Commons CLI are as follows. First, since APIs should be used in specific ways
to use this library, tutorials for the library are in high demand. Second, the APIs
of the library is not too complex to conduct a user study in a short time. Third,
the test codes of the library are rich and contain various kinds test cases.

We used Javadoc that is added code examples that were extracted by
UsETeX[36] for comparison. The reasons for choosing the UsETeX are two: (1)
UsETeX uses the same information as the proposed method because it is a tool
that extracts code examples from test codes and (2) the proposed approach uses
its sample clustering algorithm and its algorithm identifying the units under test.

4.1 Methodology

Participant Age Gender Program
Ability

Java
Ability

Commons CLI
experience

P1 22 M 7 years 2 years nothing

P2 22 M 3 years 1 years nothing

P3 23 M 12 years 1 years nothing

Table 4.1: Participants of the user study.

We recruited to a 60 minute user study 3 participants described in Table 4.1.
Participants answered the pre questionnaire about age, gender and programming
experience. The results of the pre questionnaire is described in Table 4.1.

After the pre questionnaire, participants were asked to implement simple echo
command for 20 minutes by using Javadoc documentation. Figure 4.1 shows the
top page of this documentation and it contains code examples. While the partic-
ipant implemented echo command, an observer took notes about the experiment.

1http://commons.apache.org/proper/commons-cli/

19

A

Figure 4.1: The Javadoc document used in the user study. A) the code example
extracted by UsETeX

The echo command implementation task was separated into 5 programming sub-
tasks:

A. configuring an instance of Options class. In Commons CLI,Options class
represents the command line options of the application under development.
To parse the command line arguments properly, the participants were asked
to create an instance of Options by using constructor and to set the infor-
mation of each option(e.g. --help, -n) to the instance.

B. parsing the command line arguments. CommandLineParser is an parser
interface that provides the method parsing the command line arguments by
using the instance of Options and DefaultParser is a concrete subclass of
CommandLineParser. The participants were asked to create an instance
of DefaultParser by using the constructor and to parse the command line
arguments by using CommandLineParser.parse method.

C. checking the specific option is set. CommandLine is a return type of Com-
mandLineParser.parsemethod and it provides hasOptionmethod that checks
whether the specific option is set. The participants were asked to invoke
hasOption method at the point related to the option. For example, it is
required to write hasOption("help") for checking that help option is set
at the point that determines whether to print help message.

D. obtaining the arguments that do not belong to the options.
CommandLine also provide getArgList method that returns the arguments
that do not belong to the options. The participants were asked to invoke
getArgList method after CommandLineParser.parse method invocation.

E. printing the help message. HelpFormatter provides printHelpmethod that
outputs the help message of the command line options that is represented
by the instance of Options. The participants were asked to create an in-
stance of HelpFormatter by using the constructor and to print the help
message by using printHelp method and the instance of Options.

20

The programs unrelated to above tasks were prepared beforehand because we
wanted to maximize the time that participants did the programming tasks related
to Commons CLI. For example, the program printing the list of string, that is
necessary for echo command but is not related to Commons CLI, was prepared
beforehand.

1 ...
2 CommandLine cl;
3 if (cl.hasOption("h")) {
4 // print help message
5 ...
6 }
7 ...

Listing 4.1: An example of the program written by a participant. He completed
Task C but did not complete Task B.

After the task was finished, we count the number of the completed tasks. A
participant completed a task if the APIs mentioned above were used properly.
Consider Listing 4.1 as an example of the completed task and not completed
task. A participant writing this program could understand that Command-
Line.hasOption is used for determining whether h option is set, but could not
understand how to obtain the instance of CommandLine. Task B is not com-
pleted because CommandLineParser.parse method is not used, but task C is
completed because CommandLine.hasOption is properly used.

A BA

Figure 4.2: The tutorial used in the user study. A) the example page of the
tutorial. and B) the top page of the tutorial.

Next, we explained to participants how to use the tutorial by using the library
about data structure as a sample. Similarly to the echo command implementa-
tion, participants were asked to implement simple cat command for 20 minutes
by using the tutorial generated by the proposed approach. Figure 4.2 shows the
top page and the example page of this document. The programming subtasks
that were necessary for implementing cat command is same as the subtasks of
echo command.

The programming task order and the relation of the tasks and the documents
are different for each participant. P1 implemented echo command by using the
tutorial first, P2 implemented cat command by using the Javadoc first and P3

21

implemented echo command by using the Javadoc first.
After two tasks were finished, participants answered post questionnaire about

the followings:

Q1 Did you feel that the tutorial was more useful than Javadoc?

Q2 Did you feel that program visualization in the tutorial is useful for under-
standing APIs?

Q3 Did you feel that the order of the example was natural?

And we got some comments about the improvements of the tutorial.
During the user study, participants used PC-GL17414GU running Ubuntu

14.04 with Core i5-3317U and 4GB RAM, LCD-MF225XBR as a sub display
for displaying a document, MA-117HBK as a mouse and TK-FCM005BK as a
keyboard. And they use emacs 24.32 as a text editor and Google Chrome 39.03

as a web browser.

4.2 Results

The result of the user study is summarized in Table 4.2 and the result of the post
questionnaire is summarized in Table 4.3.

4.2.1 How useful the tutorial generated by the proposed approach is
to lean APIs.

The result of the user study shows that regardless of the differences of conditions,
all of the participants could do more programming subtasks by using the tutorial
than by using the Javadoc. P2 and P3 answered that the tutorial generated by
the proposed method is more useful than Javadoc: P2 rated 6/7 and P3 rated
5/7 about the tutorial usability(see Table 4.3).

P1 said that he felt that using Javadoc was easier than using the tutorial
because the code example contained by Javadoc was short and it was easy to
begin to write code. In fact, P1 wrote the codes related to 4 subtasks during the
experiment with Javadoc. On the other hand, he wrote the codes related to 3
subtasks during the experiment with the tutorial.

P1 and P3 felt the order of the code example was natural: P1 rated 7/7 and
P3 rated 5/7 about the order of the example(see Table 4.3). P1 said that there
was no problem about the order, however, the code examples had too many
information about API usages to understand them easily. However, all of the
participants answered that program visualization in the tutorial was not useful
to understand APIs. P1 said that seeing the visualized program state was time
consuming. P2 told us that it was a problem that the area of code examples was
narrow due to the program visualization area.

4.2.2 Feedback about the improvement of the approach

P1 and P2 told us that it is a problem that the code examples extracted by the
proposed algorithm are too long and too complex.

P2 suggested two improvements about program visualization:

2http://www.gnu.org/software/emacs/
3https://www.google.co.jp/chrome/

22

• to show the differences of the visualized program state between the previous
step and the current step,

• and to sync the code example and visualized state. For example, if user
click second line of code example, the tutorial visualizes the program state
corresponding to second line.

The lack of the code explanation in natural language was pointed out as a
problem. For example, P1 said that he needed more comments to understand
the code examples. And P2 told us that it is desirable that he can guess easily
the content of code example from its title. P3 said that if the tutorial shows
the input and output of the sample, it becomes more easy to understand code
example. P2 and P3 said that because inferring the method signature from code
example is tedious, it is important that the tutorial provides the information of
the signatures for each methods in code examples.

Participant A B C D E

P1 tutorial tutorial

P2 tutorial both

P3 tutorial both Javadoc tutorial tutorial

Table 4.2: Summary of the user study results. The cells contain tutorial if the
participant completed a task successfully by using the proposed tutorial only,
contain Javadoc if the participant completed a task by using the Javadoc only
and contain both if the participant completed a task by using both of the docu-
mentations.

Participant Q1 Usability Q2 Program
visualization

Q3 Example order

P1 3 1 7

P2 6 3 4

P3 5 3 5

Table 4.3: The results of the post questionnaire. Each question is 7-point scale.
Rating of 1 represents strong disagreement and Rating of 7 represents strong
agreement.

23

Chapter 5

Discussion and Future Works

5.1 Discussion

In the user study, all participants completed more task by using the proposed
tutorial than by using Javadoc and two-thirds participants felt that the proposed
tutorial is more helpful than Javadoc. On the other hand, all participants disagree
that program visualization in the tutorial was useful to learn APIs, and pointed
out that there are several improvements of the tutorial.

The results of the user study indicated that a tutorial generated by the pro-
posed approach was more effective in helping users learn the complex API usages
than the API documentation. Because writing tutorials is difficult and time
consuming tasks, this approach may be useful to maintain tutorials.

However, this algorithm has some limitations and problems. This approach
generates the executable code examples to apply program visualization technique.
But the examples is big and complex to make code examples executable certainly,
therefore the readability of examples is low. Further more, there are some cases
that the proposed algorithm generates not-executable examples. For example, the
generated example becomes not-excusable if the test class overrides the method
of its base class(see Listing 5.1).

1 public class SubTestClass {
2 @Override
3 public void assertSomeCondition(...) {
4 ...
5 }
6
7 @Test
8 public void testCase1() {
9 ...

10 assertSomeCondition(...);
11 ...
12 }
13 }

Listing 5.1: A test case that generates an not-executable code example.

In this method, the explanations of code examples written in natural language
are poor and improper. The only resources for natural language explanation in
this method is the names of the test cases that are used as titles of the code
examples. Although the name of the test case contains much information about
the content of the test case, it does not always contain appropriate information
to use for documentations.

24

5.2 Future Works

We believe the following future works are important to improve the usability of
generated tutorials.

Extracting high quality code examples

Readability of the code examples is important and the improvement of readabil-
ity of examples can increase the usability of generated tutorials. Restyling code
examples by using the static program analyzing technique may improve the read-
ability of the code examples. Similarly the code example may be separated into
simple code examples by using this technique.

Generating automatically code explanations

While the results of the user study indicates that the explanations written in
natural language is more suitable to tutorials than program visualization, this
method cannot generate appropriate natural language explanations. It may be
possible to generate natural language explanations by using pattern matching
technique such as [31].

Extending to semi-automatic methods

Although the automatic generation of tutorials save maintenance cost, it cannot
always generate a suitable tutorial. Therefore, the method can be more practical
by enabling developers to use annotations like Javadoc. The annotations need to
be helpful for not generating the tutorials but for understanding the test cases
to save maintenance costs of tutorials.

25

Chapter 6

Conclusion

This thesis proposed the algorithm that automatically generates tutorials from
unit tests by using program visualization technique and dependencies between
tests. We developed the algorithm to extract the executable code examples by
using the run-time behavior of the test cases. And we defined the dependencies
between tests for the purpose of generating tutorial by using the information
of the units under test. The results of an user study showed that this method
generates a natural order of the test cases and the tutorial generated by this
method helps programmers learn unfamiliar APIs and write the program using
these APIs. However, an user study found that there are several improvement in
this method to generate more efficient tutorials.

26

27

Appendix A

Sample Inputs

A.1 Library Source Code

Graph.java

1 package sample;
2 public class Graph {
3 public class Pair {
4 public Pair(String v1, String v2) {
5 this.v1 = v1;
6 this.v2 = v2;
7 }
8 public String v1;
9 public String v2;

10 }
11 private java.util.Set<String> vertexSet;
12 private java.util.Set<Pair> edgeSet;
13 private String title;
14 public Graph(String title) {
15 title = title;
16 vertexSet = new java.util.HashSet<String>();
17 edgeSet = new java.util.HashSet<Pair>();
18 }
19 public Graph() {
20 title = "";
21 vertexSet = new java.util.HashSet<String>();
22 edgeSet = new java.util.HashSet<Pair>();
23 }
24

25 public String getTitle() {
26 return title;
27 }
28 public void addVertex(String vertex) {
29 vertexSet.add(vertex);
30 }
31 public java.util.Set<String> getVertexSet() {
32 return vertexSet;
33 }
34 public void addEdge(String v1, String v2) {
35 edgeSet.add(new Pair(v1, v2));
36 }
37 public java.util.Set<Pair> getEdgeSet() {
38 return edgeSet;
39 }
40 public java.util.Set<String> neighbors(String vertex) {
41 java.util.Set<String> neighbors = new java.util.HashSet<String>();
42 for (Pair p: edgeSet) {
43 if (p.v1.equals(vertex)) {
44 neighbors.add(p.v2);
45 } else if (p.v2.equals(vertex)) {
46 neighbors.add(p.v1);
47 }
48 }
49 return neighbors;
50 }
51 }

28

DotConcverter.java

1 package sample;
2

3 public class DotConverter {
4 private Graph g;
5 private java.util.Map<String, String> shapes;
6 public DotConverter(Graph g) {
7 this.g = g;
8 shapes = new java.util.HashMap<String, String>();
9 }

10 public void setShape(String v, String shape) {
11 shapes.put(v, shape);
12 }
13 public String convert() {
14 String r = "graph␣" + g.getTitle() + "␣{\n";
15 for(String v: g.getVertexSet()) {
16 if (shapes.containsKey(v)) {
17 r += (v + "[shape=\"" + shapes.get(v) + "\"]\n");
18 } else {
19 r += (v + "\n");
20 }
21 }
22 for (Graph.Pair p: g.getEdgeSet()) {
23 r += p.v1 + "␣--␣" + p.v2 + "\n";
24 }
25 r += "}";
26 return r;
27 }
28 }

29

A.2 Test Codes

GraphTest.java

1 package sample;
2
3 import org.junit.∗;
4 import static org.junit.Assert.∗;
5

6 public class GraphTest {
7 @Test
8 public void testVertex() {
9 Graph g = new Graph();

10 g.addVertex("foo");
11 }
12 @Test
13 public void testEdge() {
14 Graph g = new Graph("title");
15 g.addVertex("foo");
16 g.addVertex("bar");
17 g.addEdge("foo", "bar");
18 }
19 }

DotConcverterTest.java

1 package sample;
2
3 import org.junit.∗;
4 import static org.junit.Assert.∗;
5

6 public class DotConverterTest {
7 @Test
8 public void testConvert() {
9 Graph g = new Graph();

10 g.addVertex("1");
11 g.addVertex("2");
12 g.addVertex("3");
13 g.addVertex("4");
14 g.addEdge("1", "2");
15 g.addEdge("1", "3");
16 g.addEdge("2", "4");
17

18 DotConverter c = new DotConverter(g);
19 c.setShape("1", "box");
20

21 System.out.println(c.convert());
22 }
23 }

30

References

[1] cumiki. http://cumiki.com/. Accessed: 2015-01-18.

[2] doctest. https://docs.python.org/2.7/library/doctest.html. Accessed: 2015-
01-18.

[3] Kent Beck. Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

[4] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer.
Example-centric programming: integrating web search into the development
environment. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 513–522. ACM, 2010.

[5] Raymond PL Buse and Westley Weimer. Synthesizing api usage examples.
In Software Engineering (ICSE), 2012 34th International Conference on,
pages 782–792. IEEE, 2012.

[6] JH Cross, T Dean Hendrix, Larry A Barowski, et al. Combining dynamic
program viewing and testing in early computing courses. In Computer Soft-
ware and Applications Conference (COMPSAC), 2011 IEEE 35th Annual,
pages 184–192. IEEE, 2011.

[7] James H Cross II, T Dean Hendrix, David A Umphress, Larry A Barowski,
Jhilmil Jain, and Lacey N Montgomery. Robust generation of dynamic data
structure visualizations with multiple interaction approaches. ACM Trans-
actions on Computing Education (TOCE), 9(2):13, 2009.

[8] Barthélémy Dagenais and Martin P Robillard. Creating and evolving de-
veloper documentation: understanding the decisions of open source con-
tributors. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, pages 127–136. ACM,
2010.

[9] Barthélémy Dagenais and Martin P Robillard. Recovering traceability links
between an api and its learning resources. In Software Engineering (ICSE),
2012 34th International Conference on, pages 47–57. IEEE, 2012.

[10] Prem Devanbu, Sakke Karstu, Walcélio Melo, and William Thomas. Ana-
lytical and empirical evaluation of software reuse metrics. In Proceedings of
the 18th international conference on Software engineering, pages 189–199.
IEEE Computer Society, 1996.

[11] Markus Gaelli, Oscar Nierstrasz, and Stéphane Ducasse. One-method com-
mands: Linking methods and their tests. In OOPSLA Workshop on Revival
of Dynamic Languages, 2004.

31

[12] John E Gaffney Jr and Thomas A Durek. Software reuse―key to enhanced
productivity: some quantitative models. Information and Software Technol-
ogy, 31(5):258–267, 1989.

[13] Markus Galli, Michele Lanza, Oscar Nierstrasz, and Roel Wuyts. Ordering
broken unit tests for focused debugging. In Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on, pages 114–123. IEEE,
2004.

[14] Mohammad Ghafari. Extracting code examples from unit test cases. In
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pages 667–667. IEEE, 2014.

[15] Mohammad Ghafari, Carlo Ghezzi, Andrea Mocci, and Giordano Tambur-
relli. Mining unit tests for code recommendation. In ICPC, pages 142–145,
2014.

[16] Shiry Ginosar, De Pombo, Luis Fernando, Maneesh Agrawala, and Bjorn
Hartmann. Authoring multi-stage code examples with editable code histo-
ries. In Proceedings of the 26th annual ACM symposium on User interface
software and technology, pages 485–494. ACM, 2013.

[17] Philip J Guo. Online python tutor: Embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium
on Computer science education, pages 579–584. ACM, 2013.

[18] Lea Haensenberger, Adrian Kuhn, and Oscar Nierstrasz. Using dynamic
analysis for api migration. Program Comprehension through Dynamic Anal-
ysis, page 32, 2008.

[19] Michihiro Horie and Shigeru Chiba. Tool support for crosscutting concerns
of api documentation. In Proceedings of the 9th International Conference on
Aspect-Oriented Software Development, pages 97–108. ACM, 2010.

[20] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. Adding
examples into java documents. In Automated Software Engineering, 2009.
ASE’09. 24th IEEE/ACM International Conference on, pages 540–544.
IEEE, 2009.

[21] Adrian Kuhn, Bart Van Rompaey, Lea Haensenberger, Oscar Nierstrasz,
Serge Demeyer, Markus Gaelli, and Koenraad Van Leemput. Jexample:
Exploiting dependencies between tests to improve defect localization. In
Agile Processes in Software Engineering and Extreme Programming, pages
73–82. Springer, 2008.

[22] Henry Lieberman and Christopher Fry. Zstep 95: A reversible, animated
source code stepper. Software Visualization: Programming as a Multimedia
Experience, pages 277–292, 1997.

[23] Chen Lv, Wei Jiang, Yue Liu, and Songlin Hu. Apisynth: a new graph-based
api recommender system. In ICSE Companion, pages 596–597, 2014.

[24] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jun-
gloid mining: helping to navigate the api jungle. ACM SIGPLAN Notices,
40(6):48–61, 2005.

32

[25] Seyed Mehdi Nasehi and Frank Maurer. Unit tests as api usage examples.
In Software Maintenance (ICSM), 2010 IEEE International Conference on,
pages 1–10. IEEE, 2010.

[26] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tam-
rawi, Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. Graph-based
pattern-oriented, context-sensitive source code completion. In Proceedings
of the 2012 International Conference on Software Engineering, pages 69–79.
IEEE Press, 2012.

[27] Martin P Robillard. What makes apis hard to learn? answers from devel-
opers. Software, IEEE, 26(6):27–34, 2009.

[28] Martin P Robillard and Robert Deline. A field study of api learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[29] Daniel Rozenberg and Ivan Beschastnikh. Templated visualization of object
state with vebugger. In Software Visualization (VISSOFT), 2014 Second
IEEE Working Conference on, pages 107–111. IEEE, 2014.

[30] Christopher Scaffidi. Why are apis difficult to learn and use? Crossroads,
12(4):4–4, 2006.

[31] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Automatically de-
tecting and describing high level actions within methods. In Software En-
gineering (ICSE), 2011 33rd International Conference on, pages 101–110.
IEEE, 2011.

[32] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok.
Refactoring test code. CWI, 2001.

[33] Eric W Weisstein. Topological sort. From Mathworld–A Wolfram web re-
source, 2000.

[34] Tao Xie and Jian Pei. Mapo: Mining api usages from open source reposito-
ries. In Proceedings of the 2006 international workshop on Mining software
repositories, pages 54–57. ACM, 2006.

[35] Zixiao Zhu, Yanzhen Zou, Yong Jin, and Bing Xie. Generating api-usage
example for project developers. In Proceedings of the 5th Asia-Pacific Sym-
posium on Internetware, page 34. ACM, 2013.

[36] Zixiao Zhu, Yanzhen Zou, Bing Xie, Yong Jin, Zeqi Lin, and Lu Zhang.
Mining api usage examples from test code. In Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on, pages 301–
310. IEEE, 2014.

33

